In this study, a novel textile fractal antenna is designed and optimized using genetic algorithm for super-wideband applications. The antenna design is based on the iterations of triangular-circular patch and a partially modified elliptical ground plane. Results show that the proposed antenna presents impedance bandwidth (return loss < −10 dB) covering the range of frequencies from 1.4 to 20 GHz. The present design mainly focuses on the current trends in the development of wireless body area networks for many wireless communications such as GPS, PCS-1900, IMT-2000/UMTS, WiFi, Bluetooth, and UWB applications.
In this paper, a novel textile antenna with a semi elliptical ground plane is designed for ultra-wideband applications. Conductive woven fabric made of stainless steel/polyester (80/20%) spun yarn with 158 Ω/m linear resistance is used to design the ground and the patch of antenna. Moreover, the warp density and weft density of woven fabric are selected in a way that it gets high value of surface conductivity. The surface conductivity of woven fabric was 0.088 Ω/sq. The proposed antenna is made of triangle patch within a transmission line and its dimensions are optimized using the genetic algorithm. Results show that the proposed antenna achieves multi impedance bandwidth ranging from 1.4 to 1.6 GHz, 1.8 to 2.4 GHz, and 3.4 to 11.6 GHz (reflection coefficient <−10 dB). The antenna in both bands from 1.4 to 1.6 GHz and 1.8 to 2.4 GHz is circularly polarized. This impedance bandwidth makes it appropriate for many wireless communication systems such as GPS, Wifi, PCS-1900, IMT-2000/UMTS, and ultra-wideband applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.