A new method for measuring the electron density spatial profile has been successfully tested on the tokamak of Fontenay aux Roses (TFR). This method is based on the total reflection experienced by a wave of frequency F on the layer where F=Fpe(r). The experimental results show that the maximum electron density in the discharge is also easily measured and that accurate determination of a density profile can be obtained with a time resolution of 5 ms. This diagnostic is well adapted to all fusion devices where access to the total plasma cross section is limited, particularly for large tokamaks.
Abstract.A comprehensive empirical model of waves is developed in the objective to simulate wave-particle interactions involved in the loss and acceleration of radiation belt electrons. Three years of measured magnetic wave field components from the Plasma Wave Instrument on board the DE-1 satellite are used to model the amplitude spectral density of the magnetic wave field of each type of emission observed in the equatorial regions of the plasmasphere: VLF transmitter emissions, chorus emissions, plasmaspheric hiss emissions and equatorial emissions below ∼ 200 Hz. Each model is a function of the wave frequency f , the MLT, L and Mlat parameters, and the K p values. The performances of the plasmaspheric hiss and chorus models are tested on amplitude spectra recorded on board the OGO-5 and GEOS-1 satellites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.