In this paper, we propose a novel hybrid model for restoration of images corrupted by multiplicative noise. Using a MAP estimator, we can derive a functional whose minimizer corresponds to the denoised image we want to recover. The energies studied here are inspired by image restoration with non linear variable exponent [1,2], and it is a combination of fast growth with respect to low gradient and slow growth when the gradient is large. We study a mathematical framework to prove the well posedness of the minimizer problem and we introduce the associated evolution problem, for which we derive numerical approaches. At last, compared experimental results distinctly demonstrate the superiority of the proposed model, in term of removing some muliplicative noise while preserving the edges and reducing the staircase effect.Mathematics Subject Classification (2010). 68U10, 46E30, 65D18.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.