Desulfovibrio vulgaris Madison and Thermodesulfobacterium commune contained functionally distinct hydrogenase activities, one which exchanged 3H2 into 3H20 and was inhibited by carbon monoxide and a second activity which produced H2 in the presence of CO. Cell suspensions of D. vulgaris used either lactate, pyruvate, or CO as the electron donor for H2 production in the absence of sulfate. Both sulfidogenic species produced and consumed hydrogen as a trace gas during growth on lactate or pyruvate as electron donors and on thiosulfate or sulfate as electron acceptors. Higher initial levels of hydrogen were detected during growth on lactate-sulfate than on pyruvate-sulfate. D. vulgaris but not T. commune also produced and then consumed CO during growth on organic electron donors and sulfate or thiosulfate. High partial pressures of exogenous H2 inhibited growth and substrate consumption when D. vulgaris was cultured on pyruvate alone but not when it was metabolizing pyruvate plus sulfate or lactate plus sulfate. The data are discussed in relation to supporting two different models for the physiological function of H2 metabolism during growth of sulfidogenic bacteria on organic electron donors plus sulfate. A trace H2 transformation model is proposed for control of redox processes during growth on either pyruvate or lactate plus sulfate, and an obligate H2 cycling model is proposed for chemiosmotic energy coupling during growth on CO plus sulfate.
Two bacterial isolates, Pseudomonas sp. SL10 and Zoogloea sp. SL20, attach to heterocysts of Anabaena spp. with a high degree of selectivity, and this attachment can be expressed quantitatively in terms of adsorption isotherms. Adhesion of Pseudomonas sp. SL10 was restricted to a monolayer and exhibited a type I (Langmuir) isotherm, whereas adhesion of Zoogloea sp. SL20 involved multilayer attachment and exhibited a type II isothern. The degree of adhesion by the bacteria to heterocysts of different Anabaena species may reflect the distribution and abundance of binding sites on the surface of different heterocysts. Both Pseudomonas sp. SL10 and Zoogloea sp SL20 promoted higher rates of acetylene reduction by Anabaena spp. under oxygenated culture conditions when compared with a cyanobacterial control. At ambient oxygen levels, however, only Zoogloea sp. SL20 stimulated acetylene reduction by Anabaena spp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.