except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
Abstract. We manipulated light, temperature, and nutrients in moist tussock tundra near Toolik Lake, Alaska to determine how global changes in these parameters might affect community and ecosystem processes. Some of these manipulations altered nutrient availability, growth-form composition, net primary production, and species richness in less than a decade, indicating that arctic vegetation at this site is sensitive to climatic change. In general, short-term (3-yr) responses were poor predictors of longer term (9-yr) changes in community composition. The longer term responses showed closer correspondence to patterns of vegetation distribution along environmental gradients. Nitrogen and phosphorus availability tended to increase in response to elevated temperature, reflecting increased mineralization, and in response to light attenuation, reflecting reduced nutrient uptake by vegetation. Nutrient addition increased biomass and production of deciduous shrubs but reduced growth of evergreen shrubs and nonvascular plants. Light attenuation reduced biomass of all growth forms. Elevated temperature enhanced shrub production but reduced production of nonvascular plants. These contrasting responses to temperature increase and to nutrient addition by different growth forms "canceled out" at the ecosystem level, buffering changes in ecosystem characteristics such as biomass, production, and nutrient uptake. The major effect of elevated temperature was to speed plant response to changes in soil resources and, in the long term (9 yr), to increase nutrient availability through changes in N mineralization. Species within a growth form were similar to one another in their responses to changes in resources (light or nutrients) but showed no consistent response to elevated temperature. Species richness was reduced 30-50% by temperature and nutrient treatments, due to loss of less abundant species. Declines in diversity occurred disproportionately in forbs, which are important for animal nutrition, and in mosses, which maintain soil thermal regime. There was no increased abundance of initially rare species in response to any treatment.During our 9-yr study (the warmest decade on record in the region), biomass of one dominant tundra species unexpectedly changed in control plots in the direction predicted by our experiments and by Holocene pollen records. This suggests that regional climatic warming may already be altering the species composition of Alaskan arctic tundra.
A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.