Genome wide association studies revealed that variation in the Melatonin Receptor 1B gene (MTNR1B) is associated with insulin and glucose concentrations. Here we show that the risk genotype of this SNP predicts future type 2 diabetes (T2D) in two large prospective studies. Specifically, the risk genotype was associated with impairment of early insulin response to both oral and intravenous glucose and with faster deterioration of insulin secretion over time. We also show that the Melatonin Receptor 1B mRNA is expressed in human islets, and immunocytochemistry confirms that it is primarily localized in β-cells in islets. Non-diabetic individuals carrying the risk allele and patients with T2D showed increased expression of the receptor in islets. Insulin release from clonal β-cells in response to glucose was inhibited in the presence of melatonin. These data suggest that the circulating hormone melatonin, which is predominantly released from the pineal gland in the brain, is involved in the pathogenesis of T2D. Given the increased expression of Melatonin Receptor 1B in individuals at risk of T2D, the pathogenic effects are likely exerted via a direct inhibitory effect on β-cells. In view of these results, blocking the melatonin ligand-receptor system could be a therapeutic avenue in T2D.
Vascular endothelial growth factor (VEGF) is an angiogenic factor that stimulates axonal outgrowth. Here we used in situ hybridization and immunocytochemistry to study the VEGF receptor flk-1 in cultured superior cervical ganglia (SCG) and dorsal root ganglia (DRG) from adult mice, and also the effects of VEGF on regeneration in vitro. Neurons in both ganglia contained the flk-1 receptor and showed an increased mRNA expression and immunoreactivity for flk-1 after 48 h in culture. In SCG, but not in DRG, double immunostaining for flk-1 and VEGF revealed coexpression in many neurons, implying that VEGF may exert both autocrine and paracrine actions. One proportion of the flk-1-positive neurons in DRG stained positive for the large neuron marker RT97 and another proportion expressed calcitonin gene-related peptide (CGRP). Small IB4-positive neurons were devoid of flk-1 immunoreactivity. Most flk-1-positive neurons in the DRG, but not in the SCG, were also immunoreactive to neuropilin-1. VEGF was found to stimulate axonal outgrowth from DRG, both by an action on the growing axons and the nerve cell bodies. The latter effect could be mediated by retrograde axonal transport as revealed by the use of a two compartment system to assay axonal outgrowth. We also found that the VEGF-induced axonal outgrowth was blocked by the flk-1 inhibitor SU5416. The results strongly suggest that VEGF acts as a neurotrophic factor and plays an important role during the regeneration of peripheral nerves.
Enteroendocrine cells such as duodenal cholecystokinin (CCK cells) are generally thought to be confined to certain segments of the gastrointestinal (GI) tract and to store and release peptides derived from only a single peptide precursor. In the current study, however, transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the CCK promoter demonstrated a distribution pattern of CCK-eGFP positive cells that extended throughout the intestine. Quantitative PCR and liquid chromatography-mass spectrometry proteomic analyses of isolated, FACS-purified CCK-eGFP-positive cells demonstrated expression of not only CCK but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP), peptide YY (PYY), neurotensin, and secretin, but not somatostatin. Immunohistochemistry confirmed this expression pattern. The broad coexpression phenomenon was observed both in crypts and villi as demonstrated by immunohistochemistry and FACS analysis of separated cell populations. Single-cell quantitative PCR indicated that approximately half of the duodenal CCK-eGFP cells express one peptide precursor in addition to CCK, whereas an additional smaller fraction expresses two peptide precursors in addition to CCK. The coexpression pattern was further confirmed through a cell ablation study based on expression of the human diphtheria toxin receptor under the control of the proglucagon promoter, in which activation of the receptor resulted in a marked reduction not only in GLP-1 cells, but also PYY, neurotensin, GIP, CCK, and secretin cells, whereas somatostatin cells were spared. Key elements of the coexpression pattern were confirmed by immunohistochemical double staining in human small intestine. It is concluded that a lineage of mature enteroendocrine cells have the ability to coexpress members of a group of functionally related peptides: CCK, secretin, GIP, GLP-1, PYY, and neurotensin, suggesting a potential therapeutic target for the treatment and prevention of diabetes and obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.