The three-dimensional distribution of individual hydrogen atoms within a complex steel microstructure is characterized using isotopic doping and cryogenic-transfer atom probe tomography.
AbstractThe design of atomic-scale microstructural traps to limit the diffusion of hydrogen is one key strategy in the development of hydrogen-
A depth-resolved study of the optical and structural properties of wurtzite InGaN/GaN bilayers grown by metallorganic chemical vapor deposition on sapphire substrates is reported. Depth-resolved cathodoluminescence ͑CL͒ and Rutherford backscattering spectrometry ͑RBS͒ were used to gain an insight into the compositional profile of a 75-nm thick InGaN epilayer in the direction of growth. CL acquired at increasing electron energies reveals a peak shift of about 25 meV to the blue when the electron beam energy is increased from 0.5 to ϳ7 keV, and shows a small shift to lower energies between ϳ7 and 9 keV. For higher accelerating voltages the emission energy peak remains constant. This behavior can be well accounted for by a linear variation of In content over depth. Such an interpretation conforms to the In/Ga profile derived from RBS, where a linear decrease of the In mole fraction from the near surface ͑ϳ0.20͒ down to the near GaN/InGaN interface ͑ϳ0.14͒ region fits the random spectra very well. Furthermore, by measuring the tetragonal distortion at different depths, using RBS/channeling, it is shown that regions of higher In content also appear to be more relaxed. This result suggests that strain hinders the incorporation of In atoms in the InGaN lattice, and is the driving force for the compositional pulling effect in InGaN films.
Hydrogen embrittlement is a complex phenomenon, involving several lengthand timescales, that affects a large class of metals. It can significantly reduce the ductility and load-bearing capacity and cause cracking and catastrophic brittle failures at stresses below the yield stress of susceptible materials. Despite a large research effort in attempting to understand the mechanisms of failure and in developing potential mitigating solutions, hydrogen embrittlement mechanisms are still not completely understood. There are controversial opinions in the literature regarding the underlying mechanisms and related experimental evidence supporting each of these theories. The aim of this paper is to provide a detailed review up to the current state of the art on the effect of hydrogen on the degradation of metals, with a particular focus on steels. Here, we describe the effect of hydrogen in steels from the atomistic to the continuum scale by reporting theoretical evidence supported by quantum calculation and modern experimental characterisation methods, macroscopic effects that influence the mechanical properties of steels and established damaging mechanisms for the embrittlement of steels. Furthermore, we give an insight into current approaches and new mitigation strategies used to design new steels resistant to hydrogen embrittlement.
In this work, we investigate structural and optical properties of metalorganic chemical vapor deposition grown wurtzite InxGa1−xN/GaN epitaxial layers with thicknesses that are close to the critical layer thickness (CLT) for strain relaxation. CLT for InxGa1−xN/GaN structures was calculated as a function of the InN content, x, using the energy balance model proposed by People and Bean [Appl. Phys. Lett. 47, 322 (1985)]. Experimentally determined CLT are in good agreement with these calculations. The occurrence of discontinuous strain relaxation (DSR), when the CLT is exceeded, is revealed in the case of a 120 nm thick In0.19Ga0.89N layer by x-ray reciprocal space mapping of an asymmetrical reflection. The effect of DSR on the luminescence of this layer is clear: The luminescence spectrum shows two peaks centered at ∼2.50 and ∼2.67 eV, respectively. These two components of the luminescence of the sample originate in regions of different strain, as discriminated by depth-resolving cathodoluminescence spectroscopy. DSR leads directly to the emergence of the second, lower-energy, peak. Based on this experimental evidence, it is argued that the appearance of luminescence doublets in InGaN is not evidence of “quantum dotlike In-rich” or “phase separated” regions, as commonly proposed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.