Additive manufacturing is increasingly considered for production of high quality, metallic, aerospace parts. Despite the high potential of this manufacturing process to reduce weight and lead time, the fundamental understanding of additive manufactured Ti–6Al–4V material is still at an early stage, especially in the area of fatigue and damage tolerance. This paper covers the effects of inherent surface roughness on the fatigue life. In the as built condition, metallic parts have a poor surface texture, which is generally removed in fatigue critical areas. It is shown that the fatigue properties of Ti–6Al–4V samples, produced by direct metal laser sintering and electron beam melting, are dominated by surface roughness effects. A simple model based on an equivalent initial flaw size is formulated
Components in hybrid design become more and more important in terms of their lightweight potential. In this context the demand for weight saving in aerospace leads to increasing numbers of applications of fibre composites for primary structural components. In consequence the use of FRP‐metal compounds is necessary. Within the investigations of the researcher group “Schwarz Silber” (FOR 1224) founded by the DFG (German Research Foundation) material optimised interface structures for advanced CFRP‐aluminium compounds are currently being studied. Within their work the researcher group focussed on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium) and fibres (glass fibre) as transition elements between CFRP and aluminium. For the connection of the aluminium sheet and the transition element die‐casting and laser beam welding are basically used. As a possible alternative to the both liquid phase processes a feasibility study haven been done focussing the solid state processes diffusion bonding. The experimental results show the high potential of this process in view of the transferable loads for integral transition structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.