Lung cancer is one of the leading causes of cancer related deaths. It is due to the complexity of early detection of nodules. In clinical practice, radiologists find it difficult to determine whether a condition is normal or abnormal by manually analysing CT scan or X-ray images for nodule identification. Currently, various deep learning techniques have been developed to identify lung nodules as benign or malignant, but each technique has its own advantages and drawbacks. This work presents a thorough analysis based on segmentation techniques, Related features-based detection, multi-step detection, automatic detection, and deep convolutional neural network techniques. Performance comparison was conducted on a selected works based on performance measures. A potential research direction for the recognition of lung nodules is given at the end of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.