Previous incoherent radar studies at Arecibo Observatory, Puerto Rico have demonstrated that ∼1–3% electron density “imprints” of internal gravity waves are routinely present in the Arecibo thermosphere (∼118–500 km). A special radar technique involving photoelectron‐enhanced plasma waves (PEPWs) was used for these observations. Recently, it was discovered that the trails of the gravity waves can be detected in standard incoherent scatter power profiles when properly filtered. This result was validated using simultaneous PEPW observations. This new development opens up the possibility of monitoring thermospheric gravity waves day and night. Preliminary studies indicate that gravity waves are continually propagating through the Arecibo thermosphere, and that “sets” of waves separated by approximately 20–60 min are typically present. With the aid of additional radar tests, it may be possible to unlock Arecibo power profiles recorded over the past 30 years for gravity wave studies. The precise origin of the waves is currently unknown.
Abstract. Very accurate measurements of electron density can be made at Arecibo Observatory, Puerto Rico, by applying the coded long-pulse (CLP) radar tectmique [Sulzer, 1986a] to plasma line echoes from daytime photoelectrons [Djuth et al., 1994]. In the lower thermosphere above Arecibo, background neutral waves couple to the ionospheric plasma, typically yielding ~1-3% electron density "imprints" of the waves. These imprints are present in all observations made to date; they are decisively detected at 30-60 standard deviations above the "noise level" imposed by the measurement technique. Complementary analysis and modeling efforts provide strong evidence that these fluctuations are caused by internal gravity waves. Properties of the neutral waves such as their period and vertical wavelength are closely mirrored by the electron density fluctuations. Frequency spectra of the fluctuations exhibit a highfrequency cutoff consistent with calculated values of the Bmnt-V/iis/il/i frequency. Vertical half wavelengths are typically in the range 2-25 km between 115-and 160-km altitude, and the corresponding phase velocities are always directed downward. Some waves have vertical wavelengths short enough to be quenched by kinematic viscosity. In general, the observed electron density imprints are relatively "clean" in that their vertical wavelength spectrum is characteristically narrow-banded. It is estimated that perturbations in the horizontal wind field as small as 2-4 m/s can give rise to the observed electron density fluctuations. However, the required wind speed can be significantly greater depending on the orientation of the neutral wave's horizontal wave vector relative to the geomagnetic field. Limited observations with extended altitude coverage indicate that wave imprints can be detected at thennospheric heights as high as 500 kan.
Langmuir/ion turbulence excited with the upgraded high‐power (1.2‐GW effective radiated power) HF heating facility at Tromsø, Norway, has been recently studied with the European Incoherent Scatter VHF and UHF incoherent scatter radars. In this report we focus on the altitudinal development of the turbulence observed at the highest HF power levels available. Quite remarkably, the observed plasma turbulence plunges downward in altitude over timescales of tens of seconds following HF beam turn‐on; the bottom altitude is generally reached after ∼30 s. This phenomenon has a well‐defined HF power threshold. It is most likely caused by changes in the electron density profile brought about by HF heating of the electron gas. If this is the case, then the heat source must be nonlinearly dependent on HF power. Overall, the characteristics of the Tromsø turbulence are quite distinctive when compared to similar high‐resolution measurements made at Arecibo Observatory, Puerto Rico. After HF transmissions have been made for tens of seconds at Tromsø, billowing altitude structures are often seen, in sharp contrast to layers of turbulence observed at Arecibo.
Abstract. High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyroharmonics. The High frequency Active Auroral Research Program (HAARP) facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.