Nail-patella syndrome (NPS) is characterized by developmental defects of dorsal limb structures, nephropathy, and glaucoma and is caused by heterozygous mutations in the LIM homeodomain transcription factor LMX1B. In order to identify possible genotype-phenotype correlations, we performed LMX1B mutation analysis and comprehensive investigations of limb, renal, ocular, and audiological characteristics in 106 subjects from 32 NPS families. Remarkable phenotypic variability at the individual, intrafamilial, and interfamilial level was observed for different NPS manifestations. Quantitative urinanalysis revealed proteinuria in 21.3% of individuals. Microalbuminuria was detected in 21.7% of subjects without overt proteinuria. Interestingly, nephropathy appeared significantly more frequent in females. A significant association was established between the presence of clinically relevant renal involvement in an NPS patient and a positive family history of nephropathy. We identified normal-tension glaucoma (NTG) and sensorineural hearing impairment as new symptoms associated with NPS. Sequencing of LMX1B revealed 18 different mutations, including six novel variants, in 28 families. Individuals with an LMX1B mutation located in the homeodomain showed significantly more frequent and higher values of proteinuria compared to subjects carrying mutations in the LIM domains. No clear genotype -phenotype association was apparent for extrarenal manifestations. This is the first study indicating that family history of nephropathy and mutation location might be important in precipitating individual risks for developing NPS renal disease. We suggest that the NPS phenotype is broader than previously described and that NTG and hearing impairment are part of NPS. Further studies on modifier factors are needed to understand the mechanisms underlying phenotypic heterogeneity.
In patients with proteinuric renal diseases the rate of progression of renal insufficiency is determined by the level of blood pressure and proteinuria. It has been demonstrated that strict blood pressure control with angiotensin converting enzyme (ACE)-inhibitors or beta-blockers, aimed at reaching values below 130/80 mm Hg, attenuates the deterioration of renal function. In general, the beneficial effects of these drugs are reflected in a parallel lowering of proteinuria. Calcium channel blockers are effective antihypertensive drugs, however, their safety in patients with proteinuric renal diseases and renal insufficiency may be questioned because of reported untoward effects on urinary protein excretion. The present review discusses the potential benefits and risks of calcium channel blockers (CCBs) in the treatment of patients with renal diseases. To this end we have evaluated the effects of these drugs in animal models of progressive renal injury. In these animal models adverse effects of CCBs have been reported which are attributed to an impairment of autoregulation. In patients with proteinuria, the dihydropyridine CCBs do not lower proteinuria despite a reduction of blood pressure. Studies on the effects on the course of renal function are limited, however, the available data do suggest that this class of CCBs may be less advantageous than other antihypertensive drugs, thus arguing against the use of these agents as first-line drugs in patients with proteinuric renal diseases. Information on the effects of the non-dihydropyridine CCBs is limited to a small number of studies in patients with diabetic renal disease. Although the data suggest that these classes of CCBs might be more beneficial, more studies are needed, particularly in patients with non-diabetic renal diseases, before founded conclusions can be reached.
Plasma concentrations of free metanephrines are relatively independent of renal function and are, therefore, more suitable for diagnosis of pheochromocytoma among patients with renal failure than measurements of deconjugated metanephrines.
Medical research involving human subjects can be risky and burdensome. Therefore, such research must be reviewed and approved by a Research Ethics Committee (REC). To guarantee the safety of the subjects, it is very important that these studies be conducted in accordance with the approved protocol. An important issue in this respect is whether studies include the requisite number of subjects based on the research question. The research question is unlikely to be answered reliably if the requisite number of subjects is not met. In such cases, subjects are exposed to unnecessary risks and burdens. In this descriptive study, the authors evaluated how frequently studies are completed with the required number of subjects. Moreover, the authors identified the characteristics of research that does and does not include the required number of subjects. The results of this study show that a considerable proportion of studies (41/107) were terminated although they failed to recruit a sufficient number of subjects. Furthermore, the authors found that investigator-initiated studies have significantly (p=0.028) more problems in recruiting the requisite number of subjects than studies initiated by pharmaceutical companies. Potential solutions are discussed to reduce the number of studies that do not include a sufficient number of subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.