The space-time modelling considers the observations dependence based on time and spatial simultaneously. One of popular models used is the Generalized Space-Time Autoregressive (GSTAR). Most of the GSTAR class models assumed that the errors are uncorrelated and normal distributed. In fact, the dependence of errors is exist. In this paper, the GSTAR model is assumed to have the time correlated errors. The convergence of the parameter estimators is evaluated and the weak consistency is obtained. The illustration is performed by using the number of vehicles passed through Purbaleunyi toll gates. For this data, the GSTAR models be applied and compared between the uncorrelated and time correlated errors assumption of modeling. It is obtained that the GSTAR(1;1) model with time correlated errors, is more appropriate model to predict the number of vehicles passed through the Purbaleunyi toll gates. This appropriate model is well performed when the minimum number of time observations is more than sixty observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.