We report on the detection of two series of harmonically related doublets in IRC +10216. From the observed frequencies, the rotational constant of the first series is B = 1380.888 MHz and that of the second series is B = 1381.512 MHz. The two series correspond to two species with a 2Σ electronic ground state. After considering all possible candidates, and based on quantum chemical calculations, the first series is assigned to MgC3N and the second to MgC4H. For the latter species, optical spectroscopy measurements support its identification. Unlike diatomic metal-containing molecules, the line profiles of the two new molecules indicate that they are formed in the outer layers of the envelope, as occurs for MgNC and other polyatomic metal-cyanides. We also confirm the detection of MgCCH that was previously reported from the observation of two doublets. The relative abundance of MgC3N with respect to MgNC is close to one while that of MgC4H relative to MgCCH is about ten. The synthesis of these magnesium cyanides and acetylides in IRC +10216 can be explained in terms of a two-step process initiated by the radiative association of Mg+ with large cyanopolyynes and polyynes followed by the dissociative recombination of the ionic complexes.
Cyanogen (NCCN) is the simplest member of the series of dicyanopolyynes. It has been hypothesized that this family of molecules can be important constituents of interstellar and circumstellar media, although the lack of a permanent electric dipole moment prevents its detection through radioastronomical techniques. Here we present the first solid evidence of the presence of cyanogen in interstellar clouds by detection of its protonated form toward the cold dark clouds TMC-1 and L483. Protonated cyanogen (NCCNH + ) has been identified through the J = 5−4 and J = 10−9 rotational transitions using the 40 m radiotelescope of Yebes and the IRAM 30 m telescope. We derive beam-averaged column densities for NCCNH + of (8.6 ± 4.4) × 10 10 cm −2 in TMC-1 and (3.9 ± 1.8) × 10 10 cm −2 in L483, which translate into fairly low fractional abundances relative to H 2 , in the range (1-10) × 10 −12 . The chemistry of protonated molecules in dark clouds is discussed, and it is found that, in general terms, the abundance ratio between the protonated and non-protonated forms of a molecule increases with increasing proton affinity. Our chemical model predicts an abundance ratio NCCNH + /NCCN of ∼10 −4 , which implies that the abundance of cyanogen in dark clouds could be as high as (1-10) × 10 −8 relative to H 2 , i.e., comparable to that of other abundant nitriles such as HCN, HNC, and HC 3 N.
Context. Yebes 40 m radio telescope is the main and largest observing instrument at Yebes Observatory and is devoted to very long baseline interferometry (VLBI) and single-dish observations since 2010. It has been covering frequency bands between 2 GHz and 90 GHz in discontinuous and narrow windows in most cases in order to match the current needs of the European VLBI Network (EVN) and the Global Millimeter VLBI Array (GMVA). Aims. The Nanocosmos project, a European Union-funded synergy grant, has enabled an increase in the instantaneous frequency coverage of the Yebes 40 m radio telescope, making it possible to observe many molecular transitions with single tunings in singledish mode. This reduces the observing time and maximises the output from the telescope. Methods. We present technical specifications of the recently installed 31.5 − 50 GHz (Q band) and 72 − 90.5 GHz (W band) receivers along with the main characteristics of the telescope at these frequency ranges. We observed IRC+10216, CRL 2688, and CRL 618, which harbour a rich molecular chemistry, to demonstrate the capabilities of the new instrumentation for spectral observations in single-dish mode. Results. Our results show the high sensitivity of the telescope in the Q band. The spectrum of IRC+10126 offers an unprecedented signal-to-noise ratio for this source in this band. On the other hand, the spectrum normalised by the continuum flux towards CRL 618 in the W band demonstrates that the 40 m radio telescope produces comparable results to those from the IRAM 30 m radio telescope, although with a lower sensitivity. The new receivers fulfil one of the main goals of Nanocosmos and open up the possibility to study the spectrum of different astrophysical media with unprecedented sensitivity.
We present the discovery in TMC-1 of allenyl acetylene, H2CCCHCCH, through the observation of nineteen lines with a signal-to-noise ratio ∼4–15. For this species, we derived a rotational temperature of 7 ± 1 K and a column density of 1.2 ± 0.2 × 1013 cm−2. The other well known isomer of this molecule, methyl diacetylene (CH3C4H), has also been observed and we derived a similar rotational temperature, Tr = 7.0 ± 0.3 K, and a column density for its two states (A and E) of 6.5 ± 0.3 × 1012 cm−2. Hence, allenyl acetylene and methyl diacetylene have a similar abundance. Remarkably, their abundances are close to that of vinyl acetylene (CH2CHCCH). We also searched for the other isomer of C5H4, HCCCH2CCH (1.4-Pentadiyne), but only a 3σ upper limit of 2.5 × 1012 cm−2 to the column density can be established. These results have been compared to state-of-the-art chemical models for TMC-1, indicating the important role of these hydrocarbons in its chemistry. The rotational parameters of allenyl acetylene have been improved by fitting the existing laboratory data together with the frequencies of the transitions observed in TMC-1.
Aims. Observations of 28 SiO v = 0 J = 1-0 line emission (7-mm wavelength) from asymptotic giant branch (AGB) stars show in some cases peculiar profiles, composed of a central intense component plus a wider plateau. Very similar profiles have been observed in CO lines from some AGB stars and most post-AGB nebulae and, in these cases, they are clearly associated with the presence of conspicuous axial symmetry and bipolar dynamics. We aim to systematically study the profile shape of 28 SiO v = 0 J = 1-0 lines in evolved stars and to discuss the origin of the composite profile structure. Methods. We present observations of 28 SiO v = 0 J = 1-0 emission in 28 evolved stars, including O-rich, C-rich, and S-type Mira-type variables, OH/IR stars, semiregular long-period variables, red supergiants and one yellow hypergiant. Most objects were observed in several epochs, over a total period of time of one and a half years. The observations were performed with the 40 m radio telescope of the Instituto Geográfico Nacional (IGN) in Yebes, Spain. Results. We find that the composite core plus plateau profiles are systematically present in O-rich Miras, OH/IR stars, and red supergiants. They are also found in one S-type Mira (χ Cyg) and in two semiregular variables (X Her and RS Cnc) that are known to show axial symmetry. In the other objects, the profiles are simpler and similar to those observed in other molecular lines. The composite structure appears in the objects in which SiO emission is thought to come from the very inner circumstellar layers, prior to dust formation. The central spectral feature is found to be systematically composed of a number of narrow spikes, except for X Her and RS Cnc, in which it shows a smooth shape that is very similar to that observed in CO emission. These spikes show a significant (and mostly chaotic) time variation, while in all cases the smooth components remain constant within the uncertainties. The profile shape could come from the superposition of standard wide profiles and a group of weak maser spikes confined to the central spectral regions because of tangential amplification. Alternatively, we speculate that the very similar profiles detected in objects that are known to be conspicuously axisymmetric, such as X Her and RS Cnc, and in O-rich Mira-type stars, such as IK Tau and TX Cam, may be indicative of the systematic presence of a significant axial symmetry in the very inner circumstellar shells around AGB stars; such symmetry would be independent of the presence of weak maser effects in the central spikes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.