The emerging importance of nanoparticle technology, including iron oxide nanoparticles for monitoring development, progression, and treatment of inflammatory diseases such as arthritis, drives development of imaging techniques. Studies require an imaging protocol that is sensitive and quantifiable for the detection of iron oxide over a wide range of concentrations. Conventional signal loss measurements of iron oxide nanoparticle containing tissues saturate at medium concentrations and show a nonlinear/nonproportional intensity to concentration profile due to the competing effects of T 1 and T 2 relaxation. A concentration calibration phantom and an in vivo study of intra-articular injection in a rat knee of known concentrations of iron oxide were assessed using the difference-ultrashort echo time sequence giving a positive, quantifiable, unambiguous iron signal and monotonic, increasing concentration response over a wide concentration range in the phantom with limited susceptibility artifacts and high contrast in vivo to all other tissues. This improved dynamic response to concentration opens possibilities for quantification due to its linear nature at physiologically relevant concentrations. Magn Reson Med 68:1544-1552, 2012. V C 2012 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.