We report a synthesis of highly luminescent (CdSe)ZnS composite quantum dots with CdSe cores ranging in diameter from 23 to 55 Å. The narrow photoluminescence (fwhm ≤ 40 nm) from these composite dots spans most of the visible spectrum from blue through red with quantum yields of 30−50% at room temperature. We characterize these materials using a range of optical and structural techniques. Optical absorption and photoluminescence spectroscopies probe the effect of ZnS passivation on the electronic structure of the dots. We use a combination of wavelength dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, small and wide angle X-ray scattering, and transmission electron microscopy to analyze the composite dots and determine their chemical composition, average size, size distribution, shape, and internal structure. Using a simple effective mass theory, we model the energy shift for the first excited state for (CdSe)ZnS and (CdSe)CdS dots with varying shell thickness. Finally, we characterize the growth of ZnS on CdSe cores as locally epitaxial and determine how the structure of the ZnS shell influences the photoluminescence properties.
We study the luminescence of surface modified CdSe nanocrystallites. There has been much speculation as to the origin of the band edge emission in these quantum confined structures. Because of their large surface to volume ratios it has been suggested that the emission originates from surface-related states. However, recent theory suggests that the band edge luminescence arises from an optically inactive fine structure state or “dark” exciton. To address this issue we modify the surface of CdSe nanocrystallites with a variety of organic and inorganic ligands. We then monitor the effect changing the surface has on the energetics of the band edge luminescence through photoluminescence and fluorescence line narrowing experiments. Our results are compared with theoretical predictions for the nonresonant and resonant luminescence. We find good agreement between experiment and theory for CdSe nanocrystallites passivated with trioctylphosphine oxide, ZnS, 4-picoline, 4-(trifluoromethyl)thiophenol, and tris(2-ethylhexyl)phosphate. The lack of dependence of our data on surface modification is consistent with a dark exciton description of the band edge luminescence.
The synthesis of II-VI semiconductor nanocrystals doped with transition metals has proved to be particularly difficult. In the case of CdSe quantum dots (QDs) produced via high-temperature pyrolysis in trioctylphosphine oxide (TOPO), specially designed precursors used in this study appear to be necessary to successfully incorporate low levels of Mn. A simple etching experiment and electron paramagnetic resonance (EPR) measurements reveal that most of the dopant atoms reside in the surface layers of the inorganic lattice. The dopant dramatically affects 113 Cd magic angle spinning (MAS) nuclear magnetic resonance NMR spectra; the observed paramagnetic shift and decreased longitudinal relaxation time are consistent with Mn incorporated in the QDs. Paramagnetic atoms in QDs generate large effective magnetic fields, which implies that magnetooptical experiments can be performed simply by doping. Results from fluorescence line narrowing (FLN) studies on Mn-doped CdSe QDs mirror previous findings on undoped QDs in an external magnetic field. Experimental fitting of photoluminescence excitation (PLE) spectra of doped QDs reveals that the effective absorption line shape contains a new feature that is believed to be a previously unobserved, but theoretically predicted, optically dark fine structure state.
Colloidal FePt nanocrystals, 6 nm in diameter, were synthesized and then coated with silica (SiO2) shells. The silica shell thickness could be varied from 10 to 25 nm. As-made FePt@SiO2 nanocrystals have low magnetocrystalline anisotropy due to a compositionally disordered FePt core. When films of FePt@SiO2 particles are annealed under hydrogen at 650 degrees C or above, the FePt core transforms to the compositionally ordered L1(0) phase, and superparamagnetic blocking temperatures exceeding room temperature are obtained. The SiO2 shell prevents FePt coalescence at annealing temperatures up to approximately 850 degrees C. Annealing under air or nitrogen does not induce the FePt phase transition. The silica shell limits magnetic dipole coupling between the FePt nanocrystals; however, low temperature (5 K) and room temperature magnetization scans show slightly constricted hysteresis loops with coercivities that decrease systematically with decreased shell thickness, possibly resulting from differences in magnetic dipole coupling between particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.