We investigate via experiments and simulations the statistical properties and the accumulation of nonlinear transmission impairments in coherent systems without optical dispersion compensation. We experimentally show that signal distortion due to Kerr nonlinearity can be modeled as additive Gaussian noise, and we demonstrate that its variance has a supra-linear dependence on propagation distance for 100 Gb/s transmissions over both low dispersion and standard single mode fiber. We propose a simple empirical model to account for linear and nonlinear noise accumulation, and to predict system performance for a wide range of distances, signal powers and optical noise levels.
We investigate the feasibility of using hard-decision bit error rates or, alternatively, mutual information, both measured before a soft input forward error correction decoder, as a means to estimate performance after soft-decision decoding. Both methods are compared based on a large set of measurement data. We conclude that mutual information seems to be the more reliable measure to estimate soft-decision FEC performance.
By extending a well-established time-domain perturbation approach to dual-polarization propagation, we provide an analytical framework to predict the nonlinear interference (NLI) variance, i.e., the variance induced by nonlinearity on the sampled field, and the nonlinear threshold (NLT) in coherent transmissions with dominant intrachannel-four-wave-mixing (IFWM). Such a framework applies to non dispersion managed (NDM) very long-haul coherent optical systems at nowadays typical baudrates of tens of Gigabaud, as well as to dispersion-managed (DM) systems at even higher baudrates, whenever IFWM is not removed by nonlinear equalization and is thus the dominant nonlinearity. The NLI variance formula has two fitting parameters which can be calibrated from simulations. From the NLI variance formula, analytical expressions of the NLT for both DM and NDM systems are derived and checked against recent NLT Monte-Carlo simulations.
A feed-forward pilot-symbols aided carrier phase recovery scheme is described. The approach relies on pilot symbols that are time-division multiplexed with the transmitted data. The main advantage of the proposed solution is that of avoiding the phase ambiguity problem after a cycle slip. For homogeneous PM-QPSK transmission the proposed scheme outperforms blind carrier recovery with differential decoding.
An empirical phase noise channel model suitable for performance evaluation of high spectrally efficient modulations in 100G long-haul coherent optical transmission systems using polarization-division multiplexed and wavelength-division multiplexing channels is presented. The derivation of the model is worked out by exploiting the similarity between the power spectral density of the carrier extracted from the analysis of propagation measurements and the Lorentzian spectrum that is usually adopted to describe instabilities of semiconductor lasers. The proposed channel model is characterized by only two parameters: the linewidth of the carrier and the signal-to-noise ratio. We show that in the case of quadrature phase-shift keying transmission a good agreement exists between quantitative measures of performance extracted by processing experimental data and those obtained from simulations based on the use of the empirical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.