Itraconazole is a new orally active triazole derivative with broad-spectrum antifungal activity. This drug is effective in experimental aspergillosis and possesses in vitro activity against various species and strains of Aspergillus. Morphological destruction of inoculated hyphae and complete inhibition of hyphal outgrowth in culture is obtained from 0.07 micrograms ml-1 (10(-7)M) onward. These properties make itraconazole a likely candidate for clinical evaluation in disseminated aspergillosis.
Nine isolates of filamentous fungi previously tested in 11 different laboratories for their susceptibilities to amphotericin B and itraconazole in vitro were injected intravenously into mice and guinea pigs, and responses to treatment with both agents were studied. The experiments were done in a single laboratory. Mean survival times, the percentages of animals surviving 12 days after infection, and culture results for samples of deep organs obtained postmortem were used as markers of antifungal efficacy. Because of variations in organism pathogenicity, interpretable test systems in vivo could not be established for Fusarium spp. in mice or guinea pigs or forPseudallescheria boydii in mice, even with the use of immunosuppressive pretreatments. Among the infections that could be evaluated, some degree of response to the corresponding treatment in vivo was seen in animals infected with each of two Rhizopus arrhizus isolates susceptible to amphotericin B at <0.5 μg/ml and Aspergillus spp. isolates susceptible to itraconazole at <1.0 μg/ml. Conversely, no responses were apparent with infecting strains for which MICs were ≥2 μg/ml (amphotericin B) or ≥1 μg/ml (itraconazole). However, the limitations of the intravenous challenge systems studied mean that no firm conclusion relating MICs in vitro to the lowest effective doses in vivo could be drawn.
R126638 is a new triazole agent with potent antifungal activity in vitro against various dermatophytes, Candida spp., and Malassezia spp. Its activity against Malassezia spp. in vitro was superior to that of ketoconazole, the agent currently used for the treatment of Malassezia-related infections. R126638 showed activity comparable to or lower than that of itraconazole against dermatophytes in vitro; however, in guinea pig models of dermatophyte infections, R126638 given orally consistently showed antifungal activity superior to that of itraconazole, with 50% effective doses (ED 50 s) three-to more than eightfold lower than those of itraconazole, depending on the time of initiation and the duration of treatment. The ED 50 of R126638 in a mouse dermatophytosis model was more than fivefold lower than that of itraconazole. These data indicate that if the effects of R126638 seen when it is used to treat animals can be extrapolated to humans, the novel compound would be expected to show effects at doses lower than those of existing drugs and, hence, present a lower risk for side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.