The nonlinear dynamics of beta-induced Alfvén eigenmodes (BAEs) driven by energetic particles (EPs) in the presence of ion-temperature-gradient turbulence is investigated, by means of selfconsistent global gyrokinetic simulations and analytical theory. A tokamak magnetic equilibrium with large aspect ratio and reversed shear is considered. A previous study of this configuration has shown that the electron species plays an important role in determining the nonlinear saturation level of a BAE in the absence of turbulence (Biancalani et al 2020 J. Plasma Phys.). Here, we extend the study to a turbulent plasma. The EPs are found modify the heat fluxes by introducing energy at the large spatial scales, mainly at the toroidal mode number of the dominant BAE and its harmonics. In this regime, BAEs are found to carry a strong electron heat flux. The feed-back of the global relaxation of the temperature profiles induced by the BAE, and on the turbulence dynamics, is also discussed.
Numerical simulations of Alfvén modes driven by energetic particles are performed with the gyrokinetic (GK) global particle-in-cell code ORB5. A reversed shear equilibrium magnetic field is adopted. A simplified configuration with circular flux surfaces and large aspect ratio is considered. The nonlinear saturation of beta-induced Alfvén eigenmodes (BAE) is investigated. The roles of the wave–particle nonlinearity of the different species, i.e. thermal ions, electrons and energetic ions are described, in particular for their role in the saturation of the BAE and the generation of zonal flows. The nonlinear redistribution of the electron population is found to be important in increasing the BAE saturation level and the zonal flow amplitude.
The linear destabilization and nonlinear saturation of energetic-particle driven Alfvénic instabilities in tokamaks strongly depend on the damping channels. In this work, the collisionless damping mechanisms of Alfvénic modes are investigated within a gyrokinetic framework, by means of global simulations with the particle-in-cell code ORB5, and compared with the eigenvalue code LIGKA and reduced models. In particular, the continuum damping and the Landau damping (of ions and electrons) are considered. The electron Landau damping is found to be dominant on the ion Landau damping for experimentally relevant cases. As an application, the linear and nonlinear dynamics of toroidicity induced Alfvén eigenmodes and energetic-particle driven modes in ASDEX Upgrade is investigated theoretically and compared with experimental measurements.
This paper presents a study of the interaction between Alfvén modes and zonal structures, considering a realistic ASDEX Upgrade equilibrium. The results of gyrokinetic simulations with the global, electromagnetic, particle-in-cell code ORB5 are presented, where the modes are driven unstable by energetic particles with a bump-on-tail equilibrium distribution function, with radial density gradient. Two regimes have been observed. At low energetic particle concentration, the zonal structure (identified as an energetic particle-driven geodesic acoustic mode) is more unstable than the Alfvén mode. In the regime at high energetic particle concentration, the Alfvén mode is more unstable than the zonal structure. The interplay between the modes leads to a modification of their growth rates as well as to a modification of their saturation levels. The theoretical explanation of the mode interaction is given in terms of three-wave coupling of the energetic particle-driven geodesic acoustic mode and Alfvén mode, mediated by the curvature–pressure coupling term of the energetic particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.