The Magnetic Resonance (MR) tagging technique provides detailed information about 2D motion in the plane of observation. Interpretation of this information as a reflection of the 3D motion of the entire cardiac wall is a major problem. In finite element models of the mechanics of the infarcted heart, an infarcted region causes motional asymmetry, extending far beyond the infarct boundary. Here we present a method to quantify such asymmetry in amplitude and orientation. For this purpose images of a short-axis cross-section of the ejecting left ventricle were acquired from 9 healthy volunteers and 5 patients with myocardial infarction. MR-tags were applied in a 5 mm grid at end-diastole. The tags were tracked by video-image analysis. Tag motion was fitted to a kinematic model of cardiac motion. For the volunteers and the patients the center of the cavity displaced by about the same amount (p = 0.11) during the ejection phase: 3.8 +/- 1.4 and 3.0 +/- 0.9 mm (mean +/- sd), respectively. Cross-sectional rotation and the decrease in cross-sectional area of the cavity were both greater in the volunteers than in the patients: 6.4 +/- 1.5 vs. 3.0 +/- 0.8 degrees (p < 0.001), and 945 +/- 71 vs. 700 +/- 176 mm2 (p = 0.02), respectively. In the patients, asymmetry of wall motion, as expressed by a sine wave dependency of contraction around the circumference, was significantly enlarged (p = 0.02). The proposed method of kinematic analysis can be used to assess cardiac deformation in humans. We expect that by analyzing images of more cross-sections simultaneously, the 3D location and the degree of infarction can be assessed efficiently.
People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.