The thermal decomposition of hydroxyl-terminated generation-4 polyamidoamine dendrimer (G4OH) films deposited on Au surfaces has been compared with decomposition of the same dendrimer encapsulating an approximately 40-atom Pt particle (Pt-G4OH). Infrared absorption reflection spectroscopy studies showed that, when the films were heated in air to various temperatures up to 275 degrees C, the disappearance of the amide vibrational modes occurred at lower temperature for the Pt-G4OH film. Dendrimer decomposition was also investigated by thermogravimetric analysis (TGA) in both air and argon atmospheres. For the G4OH dendrimer, complete decomposition was achieved in air at 500 degrees C, while decomposition of the Pt-G4OH dendrimer was completed at 400 degrees C, leaving only platinum metal behind. In a nonoxidizing argon atmosphere, a greater fraction of the G4OH decomposed below 300 degrees C, but all of the dendrimer fragments were not removed until heating above 550 degrees C. In contrast, Pt-G4OH decomposition in argon was similar to that in air, except that decomposition occurred at temperatures approximately 15 degrees C higher. Thermal decomposition of the dendrimer films on Au surfaces was also studied by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) under ultrahigh vacuum conditions. Heating the G4OH films to 250 degrees C during the TPD experiment induced the desorption of large dendrimer fragments at 55, 72, 84, 97, 127, 146, and 261 amu. For the Pt-G4OH films, mass fragments above 98 amu were not observed at any temperature, but much greater intensities for H(2) desorption were detected compared to that of the G4OH film. XPS studies of the G4OH films demonstrated that significant bond breaking in the dendrimer did not occur until temperatures above 250 degrees C and heating to 450 degrees C caused dissociation of C=O, C-O, and C-N bonds. For the Pt-G4OH dendrimer films, carbon-oxygen and carbon-nitrogen bond scission was observed at room temperature, and further decomposition to atomic species occurred after heating to 450 degrees C. All of these results are consistent with the fact that the Pt particles inside the G4OH dendrimer catalyze thermal decomposition, allowing dendrimer decomposition to occur at lower temperatures. However, the Pt particles also catalyze bond scission within the dendrimer fragments so that decomposition of the dendrimer to gaseous hydrogen is the dominant reaction pathway compared to desorption of the larger dendrimer fragments observed in the absence of Pt particles.
The thermal decomposition of methanol has been studied on TiO 2 (110) as well as on Cu and oxygen-covered Cu nanoclusters supported on TiO 2 (110) using temperature programmed desorption (TPD). The sizes of the Cu clusters were characterized by scanning tunneling microscopy (STM). Methanol chemistry on the vacuumannealed, reduced TiO 2 surface itself produces ethylene as the main desorption product. Reoxidation of the TiO 2 surface quenches the production of ethylene but also results in a new formaldehyde desorption peak at 870 K. The reactivity of methanol on small Cu nanoclusters (40.2 ( 7.0 Å diameter, 12.7 ( 2.4 Å height) is minimal, but trace amounts of formaldehyde, CO 2 , methane and H 2 are detected in TPD experiments, demonstrating that the Cu nanoclusters are more active than bulk single-crystal Cu surfaces. On oxygencovered Cu nanoclusters, methanol reaction produces formaldehyde and CO 2 as the major gaseous products as well as H 2 , water, and methane. The yields of formaldehyde and CO 2 increase as the Cu coverage is increased from 2 to 12 ML, indicating that these products are formed from reaction associated with the Cu surface. Lattice oxygen from the titania surface participates in methanol reaction because reoxidation of the titania surface with 18 O 2 prior Cu deposition results in the evolution of H 2 18 O, C 16 O 18 O, and C 18 O 2 in TPD experiments. No cluster size effects were observed for methanol chemistry on the pure Cu and oxygencovered Cu clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.