The oxygen reduction reaction (ORR)
is an important electrode reaction
for energy storage and conversion devices based on oxygen electrocatalysis.
This paper introduces the thermodynamics, reaction kinetics, reaction
mechanisms, and reaction pathways of ORR in aqueous alkaline media.
Recent advances of the catalysts for ORR were extensively reviewed,
including precious metals, nonmetal-doped carbon, carbon–transition
metal hybrids, transition metal oxides with spinel and perovskite
structures, and so forth. The applications of those ORR catalysts
to zinc–air batteries and alkaline fuel cells were briefly
introduced. A concluding remark summarizes the current status of the
reaction pathways, advanced catalysts, and the future challenges of
the research and development of ORR.
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential reactions for energy-storage and -conversion devices relying on oxygen electrochemistry. High-performance, nonprecious metal-based hybrid catalysts are developed from postsynthesis integration of dual-phase spinel MnCo2O4 (dp-MnCo2O4) nanocrystals with nanocarbon materials, e.g., carbon nanotube (CNT) and nitrogen-doped reduced graphene oxide (N-rGO). The synergic covalent coupling between dp-MnCo2O4 and nanocarbons effectively enhances both the bifunctional ORR and OER activities of the spinel/nanocarbon hybrid catalysts. The dp-MnCo2O4/N-rGO hybrid catalysts exhibited comparable ORR activity and superior OER activity compared to commercial 30 wt % platinum supported on carbon black (Pt/C). An electrically rechargeable zinc-air battery using dp-MnCo2O4/CNT hybrid catalysts on the cathode was successfully operated for 64 discharge-charge cycles (or 768 h equivalent), significantly outperforming the Pt/C counterpart, which could only survive up to 108 h under similar conditions.
An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm(-2)) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.