Abstract-Interventional radiology is a minimally invasive procedure where thin instruments, guidewires and catheters or stents are steered through the patient's vascular system under X-ray imaging for treatment of vascular diseases. The complexity of these procedures makes training in order to master hand-eye coordination, instrument manipulation and procedure protocols for each radiologist mandatory. In this paper, we present a computer-based real-time simulation of interventional radiology procedures, which deploys a very efficient physics-based thread model to simulate the elastic behavior of guidewires and catheters. A fast collision detection scheme provides continuous collision response, which reveals more details of arterial walls than a centerline approach. Furthermore rendering techniques for realistic X-ray effect have been implemented. Our simulation structure is updated at a haptic rate of 500 Hz, thus contributing to physical realism.
<p><strong>Abstract.</strong> This paper presents a viewpoint-related fusion method of massive vector data and 3D terrain, in order to superpose the massive 2D vector data onto the undulating multi-resolution 3D terrain precisely and efficiently. First, the method establishes an adaptive hierarchical grid spatial index for vector data. It will determine the geographic spatial relationship between vector data and the tiles of 3D terrain in the visible area; secondly, this method will use the improved sub-pixel graphics engine AggExt to generate textures for vector data that has been bound to terrain tiles in real time; Finally, considering that a large amount of vector data will generate a lot of 2D textures in the computer memory, the method should release the “expired” vector textures. In this paper, in order to take into account the real-time convergence and the smooth interactivity of 3D scenes, this method will adopt a multi-threading strategy. The experimental results show that this method can realize the real-time and seamless fusion of massive vector objects on the 3D terrain, and has a high rendering frame rate. It can also reduce the aliasing produced by traditional texture-based methods and improve the quality of vector data fusion.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.