This contribution summarizes a variety of results and ongoing activities, which contribute to our understanding of inelastic and reactive collisions involving hydrogen ions. In an overview of our present theoretical knowledge of various HmD+ collision systems (m + n < or = 5), it is emphasized that although the required potential energy surfaces are well characterized, no detailed treatments of the collision dynamics are available to date, especially at the low energies required for astrochemistry. Instead of treating state-to-state dynamics with state of the art methods, predictions are still based on: (i) simple thermodynamical arguments, (ii) crude reaction models such as H atom exchange or proton jump, or (iii) statistical considerations used for describing processes proceeding via long-lived or strongly interacting collision complexes. A central problem is to properly account for the consequences of the fact that H and D are fermions and bosons, respectively. In the experimental and results sections, it is emphasized that although a variety of innovative techniques are available and have been used for measuring rate coefficients, cross-sections or state-to-state transition probabilities, the definitive experiments are still pending. In the centre of this contribution are our activities on various m + n = 5 systems. We report a few selected additional results for collisions of hydrogen ions with p-H2, o-H2, HD, D2 or well-defined mixtures of these neutrals. Most of the recent experiments are based on temperature variable multipole ion traps and their combination with pulsed gas inlets, molecular beams, laser probing or electron beams. Based on the state-specific model calculations, it is concluded that for completely understanding the gas phase formation and destruction of HmDn+ in a trap, an in situ characterization of all the experimental parameters is required with unprecedented accuracy. Finally, the need to understand the hydrogen chemistry relevant for dense pre-stellar cores is discussed.
The H3+ ion and its deuterated isotopologues H2D+, D2H+ and D3+ play an important role in astrophysical and laboratory plasmas. The main challenge for understanding these ions and their interaction at low temperatures are state-specific experiments. This requires manipulation and a simple but efficient in situ characterization of their low-lying rotational states. In this contribution we report measurements of near infrared (NIR) absorption spectra. Required high sensitivity is achieved by combining liquid nitrogen cooled plasma with the technique of NIR cavity ringdown absorption spectroscopy. The measured transition frequencies are then used for exciting cold ions stored in a low-temperature 22-pole radiofrequency ion trap. Absorption of a photon by the stored ion is detected by using the laser-induced reactions technique. As a monitor reaction, the endothermic proton (or deuteron) transfer to Ar is used in our studies. Since the formed ArH+ (or ArD+) ions are detected with near unit efficiency, the stored ions can be characterized very efficiently, even if there are just a few of them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.