This is an accepted version of a paper published in Nature. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.Citation for the published paper: von Heijne, G., Contreras, X., Ernst, A., Haberkant, P., Björkholm, P. et al. (2012) "Molecular recognition of a single sphingolipid species by a protein's transmembrane domain" Nature, 481 (7382): 525-529 URL: http://dx
a b s t r a c tThis paper reviews the current knowledge on the various mechanisms for transbilayer, or flip-flop, lipid motion in model and cell membranes, enzyme-assisted lipid transfer by flippases, floppases and scramblases is briefly discussed, while non-catalyzed lipid flip-flop is reviewed in more detail. Transbilayer lipid motion may occur as a result of the insertion of foreign molecules (detergents, lipids, or even proteins) in one of the membrane leaflets. It may also be the result of the enzymatic generation of lipids, e.g. diacylglycerol or ceramide, at one side of the membrane. Transbilayer motion rates decrease in the order diacylglycerol ) ceramide ) phospholipids. Ceramide, but not diacylglycerol, can induce transbilayer motion of other lipids, and bilayer scrambling. Transbilayer lipid diffusion and bilayer scrambling are defined as two conceptually and mechanistically different processes. The mechanism of scrambling appears to be related to local instabilities caused by the nonlamellar ceramide molecule, or by other molecules that exhibit a relatively slow flip-flop rate, when asymmetrically inserted or generated in one of the monolayers in a cell or model membrane.
Background: PI(4,5)P 2 -and tyrosine phosphorylation-dependent unconventional secretion of FGF2 is mediated by direct translocation across the plasma membrane. Results: PI(4,5)P 2 -mediated membrane recruitment causes oligomerization of tyrosine-phosphorylated FGF2 that, in turn, triggers the formation of a lipidic membrane pore. Conclusion: Membrane-inserted FGF2 oligomers represent intermediates of membrane translocation during unconventional secretion. Significance: Mechanistic insight into a novel self-sustained mechanism of protein translocation across membranes is provided.
Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein-lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein-lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein -lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein-lipid interactions as well as roles of lipids as chaperones in protein folding and transport.
Understanding how membrane nanoscale organization controls transmembrane receptors signaling activity remains a challenge. We studied interferon-γ receptor (IFN-γR) signaling in fibroblasts from homozygous patients with a T168N mutation in IFNGR2. By adding a neo-N-glycan on IFN-γR2 subunit, this mutation blocks IFN-γ activity by unknown mechanisms. We show that the lateral diffusion of IFN-γR2 is confined by sphingolipid/cholesterol nanodomains. In contrast, the IFN-γR2 T168N mutant diffusion is confined by distinct actin nanodomains where conformational changes required for Janus-activated tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) activation by IFN-γ could not occur. Removing IFN-γR2 T168N-bound galectins restored lateral diffusion in lipid nanodomains and JAK/STAT signaling in patient cells, whereas adding galectins impaired these processes in control cells. These experiments prove the critical role of dynamic receptor interactions with actin and lipid nanodomains and reveal a new function for receptor glycosylation and galectins. Our study establishes the physiological relevance of membrane nanodomains in the control of transmembrane receptor signaling in vivo. VIDEO ABSTRACT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.