We have studied the relationship between the effect of epidermal growth factor (EGF) on glycogen metabolism and its effect on glycolysis, in rat hepatocyte suspensions. Although 10 nM glucagon or 10 microM adrenaline increased glycogen degradation by more than 120%, 10 nM EGF increased glycogenolysis by less than 20% in hepatocytes incubated in glucose-free medium. Both glucagon and adrenaline increased phosphorylase a activity by more than 130%; EGF increased this activity by about 30%. Under basal conditions, 65% of the glucosyl residues were released as free glucose and about 30% ended up as C3 molecules (lactate and pyruvate). Both glucagon and adrenaline decreased the proportion of glucosyl units that rendered glycolysis end-products (to 2% for glucagon and 6% for adrenaline) and increased the proportion that ended up as free glucose (to 94% and 88% of the glucosyl residues for glucagon and adrenaline respectively). EGF increased the production of both free glucose and lactate+pyruvate, but the proportion of glucosyl residues that ended up as free glucose or glycolysis end-products was unchanged. In glycogen-depleted hepatocytes incubated in the presence of 25 mM glucose, EGF affected neither glycogen deposition nor glycolysis. EGF increased cytosolic free Ca2+, and neomycin decreased both the Ca2+ signal and the glycogenolytic effect. In conclusion, our results indicate that the effect of EGF on glycolysis is secondary to the Ca(2+)-mediated stimulation of glycogenolysis in rat hepatocyte suspensions.
Using isolated rat hepatocytes, we studied the effect of epidermal growth factor (urogastrone) (EGF-URO) on the incorporation of [3-14C]pyruvate into glucose and glycogen, on the incorporation of [U-14C]glucose into glycogen, and on the oxidation of [U-14C]glucose to 14CO2. The effects of EGF-URO were compared with those of glucagon and insulin. EGF-URO, with an EC50 of 0.2 nM, enhanced by 34% (maximal stimulation) the conversion of [3-14C]pyruvate into glucose; no effect was observed on the oxidation of glucose to CO2 and on the incorporation of either pyruvate or glucose into glycogen. The effect of EGF-URO on pyruvate conversion to glucose was observed only when hepatocytes were preincubated with EGF-URO for 40 min prior to the addition of substrate. Glucagon (10 nM) increased the incorporation of [3-14C]pyruvate into glucose (44% above control); however, unlike EGF-URO, glucagon stimulated gluconeogenesis better without than with a preincubation period. Neither insulin nor EGF-URO (both 10 nM) affected the incorporation of [U-14C]glucose into glycogen during a 20-min incubation period. However, at longer time periods of incubation with the substrate (60 instead 20 min), insulin (but not EGF-URO) increased the incorporation of [14C]glucose into glycogen; EGF-URO counteracted this stimulatory effect of insulin. In contrast with previous data, our work indicates that EGF-URO can, under certain conditions, counteract the effects of insulin and, like glucagon, promote gluconeogenesis in isolated rat hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.