This paper investigates the robust H∞ faulttolerant controller design under actuator failure for a class of the stochastic Markov jump timedelay systems with parameter uncertainties. The existence condition of the state feedback robust H∞ faulttolerant controller with actuator failure is presented. The robust H∞ faulttolerant control algorithm is derived in the form of linear matrix inequality via the Lyapunov stability theory. The proposed control does not need to estimate the boundary value of an actuator fault, nor does it depend on fault detection and diagnostic devices. By solving the linear matrix inequality, a robust faulttolerant controller, which makes the closedloop system asymptotically stable and whose H∞ performance is restricted by a given bound, is designed such that its structure is comparably simpler and does not require a large number of calculations. The designed controller is applied to a UAV illustrative example. The numerical results and computer simulation demonstrate the effectiveness of the proposed fault tolerant control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.