Vegetation plays a key role in stabilizing coastal dunes and barrier islands by mediating sand transport, deposition, and erosion. Dune topography, in turn, affects vegetation growth, by determining local environmental conditions. However, our understanding of vegetation and dune topography as coupled and spatially extensive dynamical systems is limited. Here we develop and use remote sensing analyses to quantitatively characterize coastal dune ecotopographic patterns by simultaneously identifying the spatial distribution of topographic elevation and vegetation biomass. Lidar‐derived leaf area index and hyperspectral‐derived normalized difference vegetation index patterns yield vegetation distributions at the whole‐system scale which are in agreement with each other and with field observations. Lidar‐derived concurrent quantifications of biomass and topography show that plants more favorably develop on the landward side of the foredune crest and that the foredune crestline marks the position of an ecotone, which is interpreted as the result of a sheltering effect sharply changing local environmental conditions. We conclude that the position of the foredune crestline is a chief ecomorphodynamic feature resulting from the two‐way interaction between vegetation and topography.
Accretion rate in salt marshes is governed by inorganic soil deposition and soil organic matter (SOM) accumulation. Existing (limited) observations and modeling results suggest that SOM amounts, biomass production, and decomposition processes should vary widely and systematically at the marsh scale. However, we lack observations aimed at understanding how SOM production is modulated spatially within a marsh, and at elucidating the relative importance of the controlling processes. The little existing data suggest that competing effects between biomass production and decomposition processes determine an approximately spatially constant contribution of SOM to total accretion. Here we investigate this idea using concurrent observations of SOM and decomposition rates from marshes in North Carolina. Our results indicate that systematic spatial variations in SOM are small, possibly as a result of an at least partial compensation of opposing trends in biomass production and decomposed organic matter. Our analyses show that deeper soil layers are, on average, characterized by lower decomposition rates and higher stabilization factors than shallower layers, likely because of differences in the persistence of water-logged conditions. Overall, decomposition processes are sufficiently rapid that the labile material in the fresh biomass is completely decomposed before it can be sufficiently buried and stabilized. Our findings point to the importance of the fraction of initially refractory material and of stabilization processes in determining the final distribution of SOM within the soil column.
The formation and evolution of tidal platforms are controlled by the feedbacks between hydrodynamics, geomorphology, vegetation, and sediment transport. Previous work mainly addresses dynamics at the scale of individual marsh platforms. Here, we develop a process‐based model to investigate salt marsh depositional/erosional dynamics and resilience to environmental change at the scale of tidal basins. We evaluate how inputs of water and sediment from river and ocean sources interact, how losses of sediment to the ocean depend on this interaction, and how erosional/depositional dynamics are coupled to these exchanges. Model experiments consider a wide range of watershed, basin, and oceanic characteristics, represented by river discharge and suspended sediment concentration, basin dimensions, tidal range, and ocean sediment concentration. In some scenarios, the vertical accretion of a tidal flat can be greater than the rate of sea level rise. Under these conditions, vertical depositional dynamics can lead to transitions between tidal flat and salt marsh equilibrium states. This type of transition occurs much more rapidly than transitions occurring through horizontal marsh expansion or retreat. In addition, our analyses reveal that river inputs can affect the existence and extent of marsh/tidal flat equilibria by both directly providing suspended sediment (favoring marshes) and by modulating water exchanges with the ocean, thereby indirectly affecting the ocean sediment input to the system (favoring either marshes or tidal flats depending on the ratio of the river and ocean water inputs and their sediment concentrations). The model proposed has the goal of clarifying the roles of the main dynamic processes at play, rather than of predicting the evolution of a particular tidal system. Our model results most directly reflect micro‐ and meso‐tidal environments but also have implications for macro‐tidal settings. The model‐based analyses presented extend our theoretical understanding of marsh dynamics to a greater range of intertidal environments. © 2020 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.