Previous research has shown that site-specific nitrogen (N) fertilizer recommendations based on an assessment of a soil's N supply (mineral N testing) and the crop's N status (sap nitrate analysis) can help to decrease excessive N inputs for winter wheat on the North China Plain. However, the costs to derive such recommendations based on multiple sampling of a single field hamper the use of this approach at the on-farm level. In this study low-altitude aerial true-color photographs were used to examine the relationship between image-derived reflectance values and soil-plant data in an on-station experiment. Treatments comprised a conventional N treatment (typical farmers' practice), an optimum N treatment (N application based on soil-plant testing) and six treatments without N (one to six cropping seasons without any N fertilizer input). Normalized intensities of the red, green and blue color bands on the photographs were highly correlated with total N concentrations, SPAD readings and stem sap nitrate of winter wheat. The results indicate the potential of aerial photography to determine in combination with on site soilplant testing the optimum N fertilizer rate for larger fields and to thereby decrease the costs for N need assessments.
The de novo biosynthesis of sterols is critical for eukaryotes, however, some organisms lack this pathway including most oomycetes. Phytophthora spp. are sterol auxotroph but remarkably, have retained a few genes encoding enzymes in the sterol biosynthesis pathway. Here we investigated the function of PcDHCR7, a gene in Phytophthora capsici predicted to encode the Δ7-sterol reductase. When expressed in Saccharomyces cerevisiae, PcDHCR7 showed a Δ7-sterol reductase activity. Knocking out PcDHCR7 in P. capsici resulted in loss of the capacity to transform ergosterol into brassicasterol, which means PcDHCR7 has a Δ7-sterol reductase activity in P. capsici itself. This enables P. capsici to transform sterols recruited from the environment for better use. Biological characteristics were compared between wild-type isolate and PcDHCR7 knock-out transformants. The results indicated that PcDHCR7 plays a key role in mycelium development and pathogenicity of zoospores in P. capsici.
The use of chemical fertilizer along with organic fertilizer is an important agricultural practice that improves crop yield but also affects soil biogeochemical cycles. In this study, a maize field experiment was conducted to investigate the effects of NPK fertilizer (NPK), organic fertilizer (OF), and their combination (NPK+OF) on soil chemical properties, bacterial and fungal community structures, and diversity compared the control (CK, without any fertilizer). The results showed that the application of OF and NPK-combined OF increased soil organic matter (OM), total N, total P, available N, available P, and available K levels. For alpha diversity analyses, the application of fertilizers led to decreases in soil bacterial and fungal Shannon indices (except for NPK in fungi). Compared with CK, NPK, OF, and NPK+OF fertilization treatments significantly increased the abundances of Acidobacteriota, Gemmatimonadota, and Basidiomycota. Network analysis showed that fertilization produced fewer connections among microbial taxa, especially in the combination of NPK and OF. A redundancy analysis combined with Mantel test further found that the soil OM, available N and P were the main soil-fertility factors driving microbial community variations. Therefore, using organic fertilizer or biological fertilizer combined with chemical fertilizer to improve the status of soil C, N, and P is a promising method to maintain the balance of soil microorganisms in maize field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.