Heat shock protein 27 (HSP27, or HSPB1) exerts cytoprotection against many cellular insults, including cerebral ischemia. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical downstream target of HSP27 conferring the neuroprotective effects of HSP27 against neuronal ischemia. However, the function of HSP27 is highly influenced by post-translational modification, with differential cellular effects based on phosphorylation at specific serine residues. The role of phosphorylation in neuronal ischemic neuroprotection is currently unknown. We have created transgenic mice and viral vectors containing HSP27 mutated at three critical serine residues (Ser15, Ser78 and Ser82) to either alanine (HSP27-A, non-phosphorylatable) or aspartate (HSP27-D, phospho-mimetic) residues. Under both in vitro and in vivo neuronal ischemic settings, overexpression of wild-type HSP27 (HSP27) and HSP27-D, but not HSP27-A, was neuroprotective and inhibited downstream ASK1 signaling pathways. Consistently, overexpressed HSP27 was phosphorylated by endogenous mechanisms when neurons were under ischemic stress, and single point mutations identified Ser15 and Ser82 as critical for neuroprotection. Using a panel of inhibitors and gene knockdown approaches, we identified the upstream kinase protein kinase D (PKD) as the primary kinase targeting HSP27 directly for phosphorylation. PKD and HSP27 co-immunoprecipitated, and inhibition or knockdown of PKD abrogated the neuroprotective effects of HSP27 as well as the interaction with and inhibition of ASK1 signaling. Taken together, these data demonstrate that HSP27 requires PKD-mediated phosphorylation for its suppression of ASK1 cell death signaling and neuroprotection against ischemic injury.
Strokes are devastating as there are no current therapies to prevent the long term neurological deficits that they cause. Soon after ischemic stroke, there is proliferation and differentiation of neural stem/progenitor cells as an important mechanism for neuronal restoration. However, endogenous neurogenesis by itself is insufficient for effective brain repair after stroke as most newborn neurons do not survive. One fascinating strategy for stroke treatment would thus be maintaining the survival and/or promoting the differentiation of endogenous neural stem/progenitor cells. Using transgenic (Tg) mice over-expressing the C. elegans fat-1 gene encoding an enzyme that converts endogenous omega-6 to omega-3 polyunsaturated fatty acids (n-3 PUFAs), we showed that fat-1 Tg mice with chronically elevated brain levels of n-3 PUFAs exhibited less brain damage and significantly improved long-term neurological performance compared to wild type littermates. Importantly, post-stroke neurogenesis occurred more robustly in fat-1 Tg mice after focal ischemia. This was manifested by enhanced neural stem cell proliferation/differentiation and increased migration of neuroblasts to the ischemic sites where neuroblasts matured into resident neurons. Moreover, these neurogenic effects were accompanied by significantly increased oligodendrogenesis. Our results suggest that n-3 PUFA supplementation is a potential neurogenic and oligodendrogenic treatment to naturally improve post-stroke brain repair and long-term functional recovery.
Lysine malonylation (Kmal) is a recently discovered post-translational modification, and its role in the response to abiotic stress has not been reported in plants. In this study, we isolated a non-specific lipid transfer protein, DgnsLTP1, from chrysanthemum (Dendranthema grandiflorum var. Jinba). Overexpression and CRISPR-Cas9-mediated gene editing of DgnsLTP1 demonstrated that the protein endows chrysanthemum with cold tolerance. Yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), luciferase complementation imaging (LCI) and co-immunoprecipitation (Co-IP) experimental results showed that DgnsLTP1 interacts with a plasma membrane intrinsic protein DgPIP (plasma membrane intrinsic protein). Overexpressing DgPIP boosted the expression of DgGPX (Glutathione peroxidase), increased the activity of GPX, and decreased the accumulation of reactive oxygen species (ROS), thereby enhancing the low-temperature stress tolerance of chrysanthemum, while the CRISPR-Cas9-mediated mutant dgpip inhibited this process. Transgenic analyses in chrysanthemum showed that DgnsLTP1 improves the cold resistance of chrysanthemum in a DgPIP-dependent manner. Moreover, lysine malonylation of DgnsLTP1 at the K81 site prevented the degradation of DgPIP in Nicotiana benthamiana and chrysanthemum, further promoted DgGPX expression, enhanced GPX activity, and scavenged excess ROS produced by cold stress, thereby further enhancing the cold resistance of chrysanthemum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.