A novel high-density consensus wheat genetic map was obtained based on three related RIL populations, and the important chromosomal regions affecting yield and related traits were specified. A prerequisite for mapping quantitative trait locus (QTL) is to build a genetic linkage map. In this study, three recombinant inbred line populations (represented by WL, WY, and WJ) sharing one common parental line were used for map construction and subsequently for QTL detection of yield-related traits. PCR-based and diversity arrays technology markers were screened in the three populations. The integrated genetic map contains 1,127 marker loci, which span 2,976.75 cM for the whole genome, 985.93 cM for the A genome, 922.16 cM for the B genome, and 1,068.65 cM for the D genome. Phenotypic values were evaluated in four environments for populations WY and WJ, but three environments for population WL. Individual and combined phenotypic values across environments were used for QTL detection. A total of 165 putative additive QTL were identified, 22 of which showed significant additive-by-environment interaction effects. A total of 65 QTL (51.5%) were stable across environments, and 23 of these (35.4%) were common stable QTL that were identified in at least two populations. Notably, QTkw-5B.1, QTkw-6A.2, and QTkw-7B.1 were common major stable QTL in at least two populations, exhibiting 11.28-16.06, 5.64-18.69, and 6.76-21.16% of the phenotypic variance, respectively. Genetic relationships between kernel dimensions and kernel weight and between yield components and yield were evaluated. Moreover, QTL or regions that commonly interact across genetic backgrounds were discussed by comparing the results of the present study with those of previous similar studies. The present study provides useful information for marker-assisted selection in breeding wheat varieties with high yield.
In crop plants, a high-density genetic linkage map is essential for both genetic and genomic researches. The complexity and the large size of wheat genome have hampered the acquisition of a high-resolution genetic map. In this study, we report a high-density genetic map based on an individual mapping population using the Affymetrix Wheat660K single-nucleotide polymorphism (SNP) array as a probe in hexaploid wheat. The resultant genetic map consisted of 119 566 loci spanning 4424.4 cM, and 119 001 of those loci were SNP markers. This genetic map showed good collinearity with the 90 K and 820 K consensus genetic maps and was also in accordance with the recently released wheat whole genome assembly. The high-density wheat genetic map will provide a major resource for future genetic and genomic research in wheat. Moreover, a comparative genomics analysis among gramineous plant genomes was conducted based on the high-density wheat genetic map, providing an overview of the structural relationships among theses gramineous plant genomes. A major stable quantitative trait locus (QTL) for kernel number per spike was characterized, providing a solid foundation for the future high-resolution mapping and map-based cloning of the targeted QTL.High-density genetic linkage maps are essential for genetic and genomic research in crops 1-4 . Molecular breeding is more effective if the molecular map is dense to provide more choices in the quality and type of markers and to increase the probability of detecting polymorphic markers in important chromosomal intervals. In wheat, the large genome size (17 gigabases), hexaploid nature (AABBDD), high percentage of repetitive regions and low level of polymorphism have complicated the acquisition of high-resolution genetic maps by molecular markers 1-4 . To date, several kinds of molecular markers, including restriction fragment length polymorphism (RFLP) 5,6 , amplified fragment length polymorphism (AFLP) 7 , simple sequence repeats (SSRs) 8,9 , and diversity array technology (DArT) 3, 4, 10, 11 have been used to construct genetic linkage maps in wheat. Information regarding wheat molecular markers and genetic maps is available in some datasets such as GrainGenes 2.0 (https:// wheat.pw.usda.gov/GG3/), URGI (https://urgi.versailles.inra.fr/), etc. Most of these markers are mapped on the telomeric regions, and there is very limited map resolution in proximal part of the chromosomes 3 . Therefore, the density and coverage of the current genetic maps are less than satisfactory.Single-nucleotide polymorphisms (SNPs) are the most abundant type of molecular marker. Accurate and reliable methods have been developed to perform high-throughput genotyping based on SNPs 12 . With the development of new sequencing technologies, increasing numbers of SNPs have been discovered in wheat 1, 2, 13-15 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.