The mechanism by which bacteria divide is not well understood. Cell division is mediated by filaments of FtsZ and FtsA (FtsAZ) that recruit septal peptidoglycan synthesizing enzymes to the division site. To understand how these components coordinate to divide cells, we visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis. We found that the division septum was built at discrete sites that moved around the division plane. FtsAZ filaments treadmilled circumferentially around the division ring, driving the motions of the peptidoglycan synthesizing enzymes. The FtsZ treadmilling rate controlled both the rate of peptidoglycan synthesis and cell division. Thus, FtsZ treadmilling guides the progressive insertion of new cell wall, building increasingly smaller concentric rings of peptidoglycan to divide the cell.
The boundary of a cell defines the shape and scale for its subcellular organisation. However, the effects of the cell’s spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shape Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2x1x1 to 11x6x1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe, and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale in adaptation to the cell size within a characteristic length range of 3–6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling, and an adaptive range, when and only when facilitated by the three-dimensional confinement of cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.
One-sentence summary:Bacterial cytokinesis is controlled by circumferential treadmilling of FtsAZ filaments that drives the insertion of new cell wall. Abstract:How bacteria produce a septum to divide in two is not well understood. This process is mediated by periplasmic cell-wall producing enzymes that are positioned by filaments of the cytoplasmic membrane-associated actin FtsA and the tubulin FtsZ (FtsAZ). To understand how these components act in concert to divide cells, we visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis. We find that the division septum is built at discrete sites that move around the division plane. Furthermore, FtsAZ filaments treadmill in circumferential paths around the division ring, pulling along the associated cell-wall-synthesizing enzymes. We show that the rate of FtsZ treadmilling controls both the rate of cell wall synthesis and cell division. The coupling of both the position and activity of the cell wall synthases to FtsAZ treadmilling guides the progressive insertion of new cell wall, synthesizing increasingly small concentric rings to divide the cell. Main Text:Cells from all domains of life must divide in order to proliferate. In bacteria, cell division involves the inward synthesis of the cell wall peptidoglycan (PG), creating a septum that cleaves the cell in two. Septation is directed by proteins that are highly conserved among bacteria. The location and activity of the septal PG synthesis enzymes are regulated by FtsZ, a tubulin homolog, which associates with the cytoplasmic side of the membrane via an actin-like protein FtsA. FtsZ can form filaments (1) and membrane-associated copolymers with FtsA (FtsAZ) (2). Together, the two proteins form a dynamic
Cell division in typical rod-shaped bacteria such as Escherichia coli shows a remarkable plasticity in being able to adapt to a variety of irregular cell shapes. Here, we investigate the roles of the Min system and the nucleoid-occlusion factor SlmA in supporting this adaptation. We study “squeezed” E. coli in narrow nanofabricated channels where these bacteria exhibit highly irregular shapes and large volumes. Despite the severely anomalous morphologies we find that most of these bacteria maintain their ability to divide into two equally sized daughters with an accuracy comparable to that of normal rod-shaped cells (about 4%). Deletion of either slmA or minC shows that the molecular systems associated with these genes are largely dispensable for accurate cell division in these irregular cell shapes. Using fluorescence time-lapse microscopy, we determine that the functionality of the Min system is affected by the cell shape, whereas the localization of a nucleoid relative to the cell division proteins (the divisome) remains unperturbed in a broad spectrum of morphologies, consistent with nucleoid occlusion. The observed positioning of the nucleoid relative to the divisome appears not to be affected by the nucleoid-occlusion factor SlmA. The current study underscores the importance of nucleoid occlusion in positioning the divisome and shows that it is robust against shape irregularities.
22While the spatiotemporal structure of the genome is crucial to its biological function, many basic questions 23 remain unanswered on the morphology and segregation of chromosomes. Here, we experimentally show in 24 Escherichia coli that spatial confinement plays a dominant role in determining both the chromosome size 25 and position. In non-dividing cells with lengths up to 10 times normal, single chromosomes are observed 26 to expand more than 4 fold in size, an effect only modestly influenced by deletions of various nucleoid-27 associated proteins. Chromosomes show pronounced internal dynamics but exhibit a robust positioning 28 where single nucleoids reside strictly at mid-cell, while two nucleoids self-organize at ¼ and ¾ cell 29 positions. Molecular dynamics simulations of model chromosomes recapitulate these phenomena and 30 indicate that these observations can be attributed to depletion effects induced by cytosolic crowders. These 31 findings highlight boundary confinement as a key causal factor that needs to be considered for 32 understanding chromosome organization. 33 34 Key words 35 36
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.