BackgroundPrevious studies identified microRNAs (miRNAs) and messenger RNAs with significantly different expression between normal pancreas and pancreatic cancer (PDAC) tissues. Due to technological limitations of microarrays and real-time PCR systems these studies focused on a fixed set of targets. Expression of other RNA classes such as long intergenic non-coding RNAs or sno-derived RNAs has rarely been examined in pancreatic cancer. Here, we analysed the coding and non-coding transcriptome of six PDAC and five control tissues using next-generation sequencing.ResultsBesides the confirmation of several deregulated mRNAs and miRNAs, miRNAs without previous implication in PDAC were detected: miR-802, miR-2114 or miR-561. SnoRNA-derived RNAs (e.g. sno-HBII-296B) and piR-017061, a piwi-interacting RNA, were found to be differentially expressed between PDAC and control tissues. In silico target analysis of miR-802 revealed potential binding sites in the 3′ UTR of TCF4, encoding a transcription factor that controls Wnt signalling genes. Overexpression of miR-802 in MiaPaCa pancreatic cancer cells reduced TCF4 protein levels. Using Massive Analysis of cDNA Ends (MACE) we identified differential expression of 43 lincRNAs, long intergenic non-coding RNAs, e.g. LINC00261 and LINC00152 as well as several natural antisense transcripts like HNF1A-AS1 and AFAP1-AS1. Differential expression was confirmed by qPCR on the mRNA/miRNA/lincRNA level and by immunohistochemistry on the protein level.ConclusionsHere, we report a novel lncRNA, sncRNA and mRNA signature of PDAC. In silico prediction of ncRNA targets allowed for assigning potential functions to differentially regulated RNAs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-015-0358-5) contains supplementary material, which is available to authorized users.
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression by altering the translation efficiency and/or stability of targeted mRNAs. In vertebrates, more than 50% of all protein-coding RNAs are assumed to be subject to miRNA-mediated control, but current high-throughput methods that reliably measure miRNA-mRNA interactions either require prior knowledge of target mRNAs or elaborate preparation procedures. Consequently, experimentally validated interactions are relatively rare. Furthermore, in silico prediction based on sequence complementarity of miRNAs and their corresponding target sites suffers from extremely high false positive rates. Apparently, sequence complementarity alone is often insufficient to reflect the complex post-transcriptional regulation of mRNAs by miRNAs, which is especially true for animals. Therefore, combined analysis of small non-coding and protein-coding RNAs is indispensable to better understand and predict the complex dynamics of miRNA-regulated gene expression. Single-nucleotide polymorphisms (SNPs) and alternative polyadenylation (APA) can affect miRNA binding of a given transcript from different individuals and tissues, and especially APA is currently emerging as a major factor that contributes to variations in miRNA-mRNA interplay in animals. In this review, we focus on the influence of APA and SNPs on miRNA-mediated gene regulation and discuss the computational approaches that take these mechanisms into account.
Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3′ untranslated region (3′UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3′UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3′ end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3′ end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3′UTR lengths, especially for chicken, and APADB provides necessary information to close this gap.Database URL: http://tools.genxpro.net/apadb/
BackgroundThe interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3’Seq, a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in interacting pro- and eukaryotic cells without prior fixation or physical disruption of the interaction.ResultsHuman epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential expression of invading and intracellular pathogen cells was determined by dual 3’Seq coupled with the next-generation sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression). Annotation to reference transcriptomes comprising the operon structure of the employed S. enterica Typhimurium strain allowed for in silico separation of the interacting cells including quantification of polycistronic RNAs. Eighty-nine percent of the known loci are found to be transcribed in prokaryotic cells prior or subsequent to infection of the host, while 75% of all protein-coding loci are represented in the polyadenylated transcriptomes of human host cells.ConclusionsDual 3’Seq was alternatively coupled to MACE (Massive Analysis of cDNA ends) to assess the advantages and drawbacks of a library preparation procedure that allows for sequencing of longer fragments. Additionally, the identified expression patterns of both organisms were validated by qRT-PCR using three independent biological replicates, which confirmed that RELB along with NFKB1 and NFKB2 are involved in the initial immune response of epithelial cells after infection with S. enterica Typhimurium.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1489-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.