We introduce a method for fast estimation of data-adapted, spatio-temporally dependent regularization parameter-maps for variational image reconstruction, focusing on total variation (TV)-minimization. Our approach is inspired by recent developments in algorithm unrolling using deep neural networks (NNs), and relies on two distinct sub-networks. The first sub-network estimates the regularization parameter-map from the input data. The second sub-network unrolls T iterations of an iterative algorithm which approximately solves the corresponding TVminimization problem incorporating the previously estimated regularization parameter-map. The overall network is trained end-to-end in a supervised learning fashion using pairs of cleancorrupted data but crucially without the need of having access to labels for the optimal regularization parameter-maps. We prove consistency of the unrolled scheme by showing that the unrolled energy functional used for the supervised learning Γ-converges as T tends to infinity, to the corresponding functional that incorporates the exact solution map of the TV-minimization problem. We apply and evaluate our method on a variety of large scale and dynamic imaging problems in which the automatic computation of such parameters has been so far challenging: 2D dynamic cardiac MRI reconstruction, quantitative brain MRI reconstruction, low-dose CT and dynamic image denoising. The proposed method consistently improves the TV-reconstructions using scalar parameters and the obtained parameter-maps adapt well to each imaging problem and data by leading to the preservation of detailed features. Although the choice of the regularization parameter-maps is data-driven and based on NNs, the proposed algorithm is entirely interpretable since it inherits the properties of the respective iterative reconstruction method from which the network is implicitly defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.