Background The quest for improved diagnosis and treatment in home health care models has led to the development of wearable medical devices for remote vital signs monitoring. An accurate signal and a high diagnostic yield are critical for the cost-effectiveness of wearable health care monitoring systems and their widespread application in resource-constrained environments. Despite technological advances, the information acquired by these devices can be contaminated by motion artifacts (MA) leading to misdiagnosis or repeated procedures with increases in associated costs. This makes it necessary to develop methods to improve the quality of the signal acquired by these devices. Objective We aimed to present a novel method for electrocardiogram (ECG) signal denoising to reduce MA. We aimed to analyze the method’s performance and to compare its performance to that of existing approaches. Methods We present the novel Redundant denoising Independent Component Analysis method for ECG signal denoising based on the redundant and simultaneous acquisition of ECG signals and movement information, multichannel processing, and performance assessment considering the information contained in the signal waveform. The method is based on data including ECG signals from the patient’s chest and back, the acquisition of triaxial movement signals from inertial measurement units, a reference signal synthesized from an autoregressive model, and the separation of interest and noise sources through multichannel independent component analysis. Results The proposed method significantly reduced MA, showing better performance and introducing a smaller distortion in the interest signal compared with other methods. Finally, the performance of the proposed method was compared to that of wavelet shrinkage and wavelet independent component analysis through the assessment of signal-to-noise ratio, dynamic time warping, and a proposed index based on the signal waveform evaluation with an ensemble average ECG. Conclusions Our novel ECG denoising method is a contribution to converting wearable devices into medical monitoring tools that can be used to support the remote diagnosis and monitoring of cardiovascular diseases. A more accurate signal substantially improves the diagnostic yield of wearable devices. A better yield improves the devices’ cost-effectiveness and contributes to their widespread application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.