In this paper, a multiple‐input multiple‐output (MIMO) model‐based robust control scheme is proposed for the indirect control of both total alkalinity and the ratio (intermediate alkalinity)/(total alkalinity) by regulating volatile fatty acid concentrations and strong ions concentration, while guaranteeing the so‐called operational stability in anaerobic digestion (AD) processes. The proposed MIMO regulator is an adaptive controller derived from an AD model which incorporates the physicochemical equilibrium of the system as well as the use of a robust interval observer to estimate key process bounds that are used in the computation of the control efforts. Numerical simulations were carried out for a number of operating conditions under the most uncertain scenarios. Results showed that the proposed multivariable control law is able to recover the system stability around a pre‐determined set point in the face of parameter uncertainty and load disturbances.
A multivariable adaptive feedback control for highly uncertain continuous anaerobic digestion processes is proposed to regulate the volatile fatty acids (VFA) concentration, the strong ions concentrations, and the total and intermediate alkalinities. The multivariable control scheme includes a Luenberger observer to estimate both the unmeasured variables (i.e., VFA) and unknown microbial growth kinetics. The control approach is designed using an exponential Lyapunov function to resemble the typical exponential biological growth of the involved microbial consortia. Taking into account physicochemical equilibrium, alkalinities are represented as a function of the state variables. As a result, the control problem becomes a regulation problem on alkalinities, and in turn, a tracking control problem on the state variables, with two manipulated variables—the dilution rate and the feed rate of a strong alkali solution—while the state variables’ set-points are given as a function of pH. The implementation of this multivariable control scheme was experimentally tested and validated in a 0.982 m3 pilot plant treating agro-industrial wastewater, and demonstrated to be robust in the face of unknown microbial growth kinetics. Results showed the potential for practical application and optimization of industrial digesters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.