MALDI mass spectrometry imaging (MALDI-MSI) is a widely used technique to map the spatial distribution of molecules in sectioned tissue. The technique is based on the systematic generation and analysis of ions from small sample volumes, each representing a single pixel of the investigated sample surface. Subsequently, mass spectrometric images for any recorded ion species can be generated by displaying the signal intensity at the coordinate of origin for each of these pixels. Although easily equalized, these recorded signal intensities, however, are not necessarily a good measure for the underlying amount of analyte and care has to be taken in the interpretation of MALDI-MSI data. Physical and chemical properties that define the analyte molecules’ adjacencies in the tissue largely influence the local extraction and ionization efficiencies, possibly leading to strong variations in signal intensity response. Here, we inspect the validity of signal intensity distributions recorded from murine cerebellum as a measure for the underlying molar distributions. Based on segmentation derived from MALDI-MSI measurements, laser microdissection (LMD) was used to cut out regions of interest with a homogenous signal intensity. The molar concentration of six exemplary selected membrane lipids from different lipid classes in these tissue regions was determined using quantitative nano-HPLC-ESI-MS. Comparison of molar concentrations and signal intensity revealed strong deviations between underlying concentration and the distribution suggested by MSI data. Determined signal intensity response factors strongly depend on tissue type and lipid species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.