Objectives To test the polymerization stress of nine self-adhesive resin composite cements (G-CEM, iCEM, Bifix SE, Maxcem Elite, PANAVIA SA, SoloCem, SmartCem 2, SpeedCEM, RelyX Unicem 2) and one glass ionomer cement (control group; Ketac Cem). Materials and methods The crack propagation of a feldspar ceramic (n = 130) was determined by measuring crack lengths that originated from Vickers indentations, prior to and after the application and polymerization of the self-adhesive resin cements. Results for crack propagation were converted to polymerization stress values, and statistical analysis was performed using oneway ANOVA followed by Scheffé post hoc test. Results SmartCem 2 presented higher stress values than iCEM, SoloCem, and Ketac Cem, while Ketac Cem showed lower values than Bifix SE, Maxcem Elite, SmartCem 2, SpeedCEM, and RelyX Unicem 2. Conclusions Self-adhesive resin composite cements differ in their polymerization stress, which may affect the durability of the restoration. For restorations made from ceramics with lower flexural strength, such as feldspar ceramics, resin composite cement materials with less polymerization stress should be preferred. Clinical Relevance As a high polymerization shrinkage may increase crack propagation, the determination of the polymerization stress of self-adhesive resin composite cements employed for fixing all-ceramic restorations is an important factor.
A two-step homogenization procedure is presented to investigate the stiffness of a unidirectional continuous fiber-reinforced composite material containing voids of different shapes and volume contents. Since the Mori–Tanaka scheme is limited to moderate volume contents of the inhomogeneity phase, fiber and matrix are homogenized with semi-empirical relations with use of the adjusted fiber volume content in a first step. In the second step, the Mori–Tanaka scheme is applied to obtain the homogenized stiffness tensor of a transversely isotropic material containing voids aligned with the fiber direction. The voids are modelled with infinite length, but an elliptic base characterized by the aspect ratio. The tensor components of the Eshelby tensor for this case are presented in closed form for a transversely isotropic material depending on the aspect ratio and matrix material properties. The scheme is solved directly for easy implementation and the use of fast calculations of the effective engineering constants of a composite material containing voids. Experimental results from literature for different void contents and shapes are compared to the predicted moduli with cylindrical voids. From the results it is further concluded that the aspect ratio of the void and the manufacturing process of the composite should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.