Accurate forecasting of thermal loads is a critical factor for operating district heating and cooling networks economically, efficiently and with minimized emissions. If thermal loads are known with high accuracy in advance, use of renewable energies can be maximized, and fossil generation, in particular in peaking units, can be avoided. Machine learning has already proven to be an efficient tool for time series forecasting in this context. One recent advancement in machine learning is the "Temporal Fusion Transformer" (TFT), which shows especially good results in the area of time series forecasting. This paper examines the performance of TFT in the concrete context of thermal load forecasting for district heating and cooling networks. First, a brief summary of differences between TFT and other machine learning methods is given. Secondly, it is described how the method can be adopted to train a machine learning model for thermal load forecasting. The data to train and evaluate the neural network is based on 8 years of hourly operating data made available from the district heating network of the city of Ulm in Germany. The presented technique is used to produce 72 hours of heating load forecasts for three different district heating grids in the city of Ulm. The results are compared to forecasts of other machine learning methods that have been previously made as part of the publicly funded research project "deepDHC", in order to evaluate if TFT is an improvement to further reduce forecasting uncertainties.
In dem folgenden Beitrag berichten die Autoren -Fabian Behrens, Stefan Holder und Johannes Schrö dervon einem Projekt, das sie im Rahmen ihres Studiums der Angewandten Informatik an der Hochschule Fulda durchgefü hrt haben. Zum einen stellen die Autoren dabei die Konzepte fü r ein Mapping von Java-Objekten auf Datenbankrelationen und Ansätze zur Umsetzung vor, zum anderen gehen sie auf ihre Projektarbeit ein. Wie bewerten die Teilnehmer die Mö glichkeit, ihr Thema mitzubestimmen und selbstständig im Team zu bearbeiten? Welche Probleme waren besonders herausfordernd und wie wurden diese gelö st? Die von den Autoren programmierte Software steht auf der SourceForge.net-Webseite zur Verfü gung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.