The precise immune mechanisms of neuronal death in anti-Hu-associated paraneoplastic encephalomyelitis (PEM) are unclear. We performed an immunohistochemical study on postmortem brain tissue from 11 patients with anti-Hu-associated PEM to further characterize the immune reaction and to ascertain possible mechanisms of neuronal death. To analyze inflammatory infiltrates, antibodies against lymphocyte subpopulations (CD3, CD20, CD4, CD8), macrophage and activated microglia (CD68), major histocompatibility complex (MHC) classes I and II (HLA-ABC and HLA-DR), and the intercellular adhesion molecules (ICAM) -1 and -3 were used. Cell death mechanisms were defined using antibodies against the cytotoxic protein TIA-1, the C9neo component of complement, the Fas receptor (CD95) and its ligand, the apoptosis effector activated caspase-3, and the apoptosis inhibitor Bcl-2. A great number of T cells expressing the cytotoxic protein TIA-1 was observed, mainly in clusters around neurons. ICAM-1 immunoreactivity was increased in the neuropil and reactive astrocytes in areas of inflammation within the central nervous system and in satellite cells of pathological dorsal root ganglia surrounding apparently normal sensory neurons. By contrast, Fas, FasL, C9neo, and activated caspase-3 immunoreactivities were negative in pathological areas. Bcl-2 immunoreactivity was found in satellite cells, but not in sensory neurons of normal and pathological dorsal root ganglia. Our data point out to an induction of a cytotoxic, non-apoptotic, neuronal death in anti-Hu-associated PEM. The increased ICAM-1 immunoreactivity may favor the infiltration of lymphocytes in the pathological areas.
Synaptic increase of glutamate level, when not coupled to a heightened energy production, renders neurons susceptible to death. Astrocyte uptake and recycling of synaptic glutamate as glutamine is a major metabolic pathway dependent on energy metabolism, which inter-relationships are not fully understood and remain controversial. We examine how the glutamate-glutamine cycle and glucose metabolism are modified in two in vivo models of severe and mild brain injury. Graded reductions of glutaminase, the glutamate synthetic enzyme, were evidenced combined with increases in glutamine synthetase, the inactivating glutamate enzyme. Increased lactate dhydrogenase (LDH) activity was only present after a more severe injury. These results indicate an in vivo adaptation of the glutamate-glutamine cycle in order to increase the net glutamine output, reduce glutamate excitotoxicity, and avoid neuronal death. We conclude that the graded modification of the glutamate-glutamine correlation and neuronal lactate availability may be key factors in the apoptotic and necrotic neuronal demise, whose control may prove highly useful to potentiate neuronal survival.
Activation of excitatory amino acid (EAA) receptors can induce neurodegeneration by two major mechanisms of excitotoxicity, one related to the influx of Na(+), Cl(-) and water, and the other to the increase in intracellular calcium concentration ([Ca(2+)](i)). Thus, acute microinjection of EAAs in several areas of the central nervous system (CNS) has been used to produce neurodegenerative models. We studied the excitotoxic pattern associated with acute microinjection of AMPA in rat hippocampus, medial septum-diagonal band of Broca (MS-DBB), prefrontal cortex and retina. In all cases progressive neuronal loss, glial reaction and development of intra- and extracellular calcium concretions were observed. However, a CNS-area differential vulnerability was revealed, as shown by the specific atrophy of MS-DBB and its limited calcification. Whether calcium deposits are a defensive mechanism against the massive increment of free cytoplasmatic calcium is discussed on the basis of ultrastructural data and previous results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.