Scatter plots are a powerful and well‐established technique for visualizing the relationships between two variables as a collection of discrete points. However, especially when dealing with large and dense data, scatter plots often exhibit problems such as overplotting, making the data interpretation arduous. Density plots are able to overcome these limitations in highly populated regions, but fail to provide accurate information of individual data points. This is particularly problematic in sparse regions where the density estimate may not provide a good representation of the underlying data. In this paper, we present sunspot plots, a visualization technique that communicates dense data as a continuous data distribution, while preserving the discrete nature of data samples in sparsely populated areas. We furthermore demonstrate the advantages of our approach on typical failure cases of scatter plots within synthetic and real‐world data sets and validate its effectiveness in a user study.
The visualization of hierarchically structured data over time is an ongoing challenge and several approaches exist trying to solve it. Techniques such as animated or juxtaposed tree visualizations are not capable of providing a good overview of the time series and lack expressiveness in conveying changes over time. Nested streamgraphs provide a better understanding of the data evolution, but lack the clear outline of hierarchical structures at a given timestep. Furthermore, these approaches are often limited to static hierarchies or exclude complex hierarchical changes in the data, limiting their use cases. We propose a novel visual metaphor capable of providing a static overview of all hierarchical changes over time, as well as clearly outlining the hierarchical structure at each individual time step. Our method allows for smooth transitions between tree maps and nested streamgraphs, enabling the exploration of the trade-off between dynamic behavior and hierarchical structure. As our technique handles topological changes of all types, it is suitable for a wide range of applications. We demonstrate the utility of our method on several use cases, evaluate it with a user study, and provide its full source code.
Developing an algorithm for a visualization prototype often involves the direct comparison of different development stages and design decisions, and even minor modifications may dramatically affect the results. While existing development tools provide visualizations for gaining general insight into performance and structural aspects of the source code, they neglect the central importance of result images unique to graphical algorithms. In this paper, we present a novel approach that enables visualization programmers to simultaneously explore the evolution of their algorithm during the development phase together with its corresponding visual outcomes by providing an automatically updating meta visualization. Our interactive system allows for the direct comparison of all development states on both the visual and the source code level, by providing easy to use navigation and comparison tools. The on-the-fly construction of difference images, source code differences, and a visual representation of the source code structure further enhance the user's insight into the states' interconnected changes over time. Our solution is accessible via a web-based interface that provides GPU-accelerated live execution of C++ and GLSL code, as well as supporting a domain-specific programming language for scientific visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.