Motivated by better understanding the long-standing issue of the role of topography on the transport of angular momentum in rapidly rotating fluids, we conducted spin-up experiments in a straight cylinder with a regular pavement of rectangular blocks at the bottom. We perform particle image velocimetry measurements to monitor the decay of the initial differential motion generated by the sudden increase of the container rotation rate. We observe that the re-synchronization time, the so-called spin-up time, is shorter in the presence of topography with a minimum at a particular length scale of the topography pattern. We show evidence of energy transport by inertial waves as well as non-linear mechanisms leading to a scaling of the spin-up time significantly different from the classical E−1/2 in the absence of topography.
Precession driven flows are of great interest for both, industrial and geophysical applications. While cylindrical, spherical and spheroidal geometries have been investigated in great detail, the numerically and theoretically more challenging case of a non-axisymmetric cavity has received less attention. We report experimental results on the flows in a precessing triaxial ellipsoid, with a focus on the base flow of uniform vorticity, which we show to be in good agreement with existing theoretical models. As predicted, the uniform vorticity component exhibits two branches of solutions leading to a hysteresis cycle as a function of the Poincaré number. The first branch is observed at low forcing and characterized by large amplitude of the total fluid rotation and a moderate tilt angle of the fluid rotation axis. In contrast, the second branch displays only a moderate fluid rotation and a large tilt angle of the fluid rotation axis, which tends to align with the precession axis. In addition, we observe the occurrence of parametric instabilities early in the first branch, which saturate in the second branch, where we observe the same order of the kinetic energy in the base flow and instabilities.
Understanding fluid flows in planetary cores and subsurface oceans, as well as their signatures in available observational data (gravity, magnetism, rotation, etc.), is a tremendous interdisciplinary challenge. In particular, it requires understanding the fundamental fluid dynamics involving turbulence and rotation at typical scales well beyond our day-to-day experience. To do so, laboratory experiments are fully complementary to numerical simulations, especially in systematically exploring extreme flow regimes for long duration. In this review article, we present some illustrative examples where experimental approaches, complemented by theoretical and numerical studies, have been key for a better understanding of planetary interior flows driven by some type of mechanical forcing. We successively address the dynamics of flows driven by precession, by libration, by differential rotation, and by boundary topography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.