Although little is known about the etiology of progressive supranuclear palsy (PSP), genetic and epigenetic factors, oxidative injury and inflammation are thought to contribute to its development and/or progression. Evidence for activated glia involvement in PSP has raised the possibility that neuroinflammation may contribute to its pathogenesis. To investigate the correlation between neuroinflammation and PSP, a comparative study was conducted on the patterns of cytokine expression in different regions of the brains of PSP, Alzheimer’s disease (AD) patients and normal controls. Our results show different patterns of cytokine expression in each disease, with the expression of IL-1β transcripts being significantly higher in the substantia nigra of PSP than in AD and controls, while AD brains had significantly higher IL-1β expression in the parietal cortex compared to PSP and controls. In addition, expression of TGFβ was significantly higher in the cortical areas (particularly frontal and parietal lobes) of AD compared to PSP and controls. These results show a disease-specific topographical relationship among the expression of certain cytokines (IL-1β and TGFβ), microglial activation and neurodegenerative changes, suggesting that these cytokines may contribute to the pathologic process. If so, the use of cytokine-inhibitors and/or other anti-inflammatory agents may be able to slow disease progression in PSP.
By extrapolating these results, we suggest that chronic infections, such as TB and leprosy, could generate a systemic immunological shift that can affect other inflammatory processes such the one present in PD. We propose that the presence and severity of PD should be explored as a proxy for inflammatory status or competence when reconstructing the health profile in past populations.
These results are consistent with the idea that GAG-cytokine interactions constitute valid therapeutic targets and suggest the potential applicability of such an approach in the prevention of graft rejection.
Gangliosides, sialic acid-containing glycosphingolipids present in most cell membranes, are thought to participate in the maintenance of immune privilege and tumor-induced immunosuppression. However, the mechanisms responsible for their immunomodulatory activity remain poorly understood. The purpose of this study was to investigate whether gangliosides are able to modulate the balance of type-1/type-2 T cell responses and to characterize the cellular mechanisms involved. The effects of different gangliosides on anti-CD3-stimulated murine splenocytes and purified T cells were studied. The presence of gangliosides during T cell activation reduced the expression of interferon-gamma (IFN-gamma) and enhanced that of interleukin (IL)-4, suggesting a shift toward a type-2 response. Intracellular cytokine staining demonstrated that gangliosides inhibited IFN-gamma production in CD4+, CD8+, and natural killer (NK)1.1+ cell populations and enhanced IL-4 in CD4+ T cells. The ganglioside-mediated enhancement in IL-4 production was independent of changes in endogenous IFN-gamma, did not occur with cells from CD1d-deficient mice, and was partially inhibited by anti-CD1d antibodies. The inhibitory effects on IFN-gamma were independent of endogenous IL-4 or the presence of NKT cells and were unaffected by anti-CD1d antibodies. These results suggest that gangliosides may modify the immunological environment by promoting immune deviation in favor of type-2 T cell responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.