Human hantavirus disease cases, caused by Puumala virus (PUUV), are mainly recorded in western and southern areas of Germany. This bank vole reservoir survey confirmed PUUV presence in these regions but its absence in northern and eastern regions. PUUV occurrence is associated with the presence of the Western bank vole phylogroup.
Seasonal Influenza A virus (IAV) infections can promote dissemination of upper respiratory tract commensals such as Streptococcus pneumoniae to the lower respiratory tract resulting in severe life-threatening pneumonia. Here, we aimed to compare innate immune responses in the lungs of healthy colonized and non-colonized mice after IAV challenge at the initial asymptomatic stage of infection. Responses during a severe bacterial pneumonia were profiled for comparison. Cytokine and innate immune cell imprints of the lungs were analyzed. Irrespective of the colonization status, mild H1N1 IAV infection was characterized by a bi-phasic disease progression resulting in full recovery of the animals. Already at the asymptomatic stage of viral infection, the pro-inflammatory cytokine response was as high as in pneumococcal pneumonia. Flow cytometry analyses revealed an early influx of inflammatory monocytes into the lungs. Neutrophil influx was mostly limited to bacterial infections. The majority of cells, except monocytes, displayed an activated phenotype characterized by elevated CCR2 and MHCII expression. In conclusion, we show that IAV challenge of colonized healthy mice does not automatically result in severe co-infection. However, a general local inflammatory response was noted at the asymptomatic stage of infection irrespective of the infection type.
Inflammasomes are innate immune sensors that regulate caspase-1 mediated inflammation in response to environmental, host- and pathogen-derived factors. The NLRP3 inflammasome is highly versatile as it is activated by a diverse range of stimuli. However, excessive or chronic inflammasome activation and subsequent interleukin-1β (IL-1β) release are implicated in the pathogenesis of various autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and diabetes. Accordingly, inflammasome inhibitor therapy has a therapeutic benefit in these diseases. In contrast, NLRP3 inflammasome is an important defense mechanism against microbial infections. IL-1β antagonizes bacterial invasion and dissemination. Unfortunately, patients receiving IL-1β or inflammasome inhibitors are reported to be at a disproportionate risk to experience invasive bacterial infections including pneumococcal infections. Pneumococci are typical colonizers of immunocompromised individuals and a leading cause of community-acquired pneumonia worldwide. Here, we summarize the current limited knowledge of inflammasome activation in pneumococcal infections of the respiratory tract and how inflammasome inhibition may benefit these infections in immunocompromised patients.
Background In tissue infections, adenosine triphosphate (ATP) is released into extracellular space and contributes to purinergic chemotaxis. Neutrophils are important players in bacterial clearance and are recruited to the site of tissue infections. Pneumococcal infections can lead to uncontrolled hyperinflammation of the tissue along with substantial tissue damage through excessive neutrophil activation and uncontrolled granule release. We aimed to investigate the role of ATP in neutrophil response to pneumococcal infections. Methods Primary human neutrophils were exposed to the pneumococcal strain TIGR4 and its pneumolysin-deficient mutant or directly to different concentrations of recombinant pneumolysin. Neutrophil activation was assessed by measurement of secreted azurophilic granule protein resistin and profiling of the secretome, using mass spectrometry. Results Pneumococci are potent inducers of neutrophil degranulation. Pneumolysin was identified as a major trigger of neutrophil activation. This process is partially lysis independent and inhibited by ATP. Pneumolysin and ATP interact with each other in the extracellular space leading to reduced neutrophil activation. Proteome analyses of the neutrophil secretome confirmed that ATP inhibits pneumolysin-dependent neutrophil activation. Conclusions Our findings suggest that despite its cytolytic activity, pneumolysin serves as a potent neutrophil activating factor. Extracellular ATP mitigates pneumolysin-induced neutrophil activation.
Pneumonia is one of the leading causes of death worldwide. Here, we compared the impact of bacterial- and viral-induced pneumonia on the respiratory and gastrointestinal microbiome. Using a meta-omics approach, we identified specific profiles that allow discrimination between bacterial and viral causative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.