Despite the public debate nowadays on the future of Internal Combustion Engines (ICE), which is impeding their development, one limitation towards further optimization of ICE in terms of fuel consumption and emissions can be seen in the current approach and more specifically in the transient engine operation and its control. The main drawbacks in the current approach source from: 1) complex structure of mechanization including sensors and actuators, 2) low time resolution and accuracy of sensing (cost driven), 3) complex Electronic Control Unit (ECU)-software architecture associated with huge calibration effort and 4) recently, funded research due to unsecure business model of ICE is becoming less. To overcome these difficulties unexploited potential should be utilized. Some of this potential lies in cycle-by-cycle and cylinder-by-cylinder accurate fuel and air control, and in the development of physical based virtual sensors with high time resolution and accuracy. One of the main motivations for this study was to develop a measurement technique that enables crank-angle resolved air mass flow rate measurements during engine operation in a dynamometer test cell. The measurement principle is quite simple and is based on gauging the dynamic pressure in both the intake and exhaust duct at the closest possible positions to the valves. To fulfill these requirements aerodynamic probes have been developed and manufactured utilizing 3D printing. The probes have been integrated in special developed flanges, which correspond exactly to the shape of the air channels in the cylinder head of the engine. Hence, they can be mounted either in front of the valves at the intake or behind the valves at the exhaust duct. Results at different engine operating conditions have been obtained, analyzed and correlated to other sensors like air-flow meter. Those post-processed results can be further used to validate 1-D gas exchange models, or 3-D Computational Fluid Dynamics (CFD) port flow models. The ultimate scope of these measurements is to calibrate fast physical-based gas exchange models that can be directly used in the engine control framework on an embedded system.
<div class="section abstract"><div class="htmlview paragraph">Ammonia, which is considered as an excellent hydrogen carrier, could potentially become a clean fuel for direct use in ICE.</div><div class="htmlview paragraph">An experimental setup with a strongly modified inline four-cylinder (I4) heavy duty Diesel engine was used to study different combustion modes of ammonia in ICE. The fourth cylinder of that engine was operated in a monovalent mode using either OME or Diesel fuel. Its complete exhaust stream was fed into the first cylinder of the same engine, which was operated on a dual-fuel mode by utilizing ammonia port injection and OME or Diesel pilot injection to ignite the mixture. The fourth cylinder of the I4 heavy duty engine can be operated at conditions between idle and full load and at different stoichiometries (λ) to impact both the temperature and the oxygen concentration at the exhaust of that cylinder. Since the first cylinder is fed by the complete exhaust stream of the fourth, the intake conditions of the first cylinder can be controlled appropriately and various ammonia combustion modes can be realized.</div><div class="htmlview paragraph">Emissions measurements at the intake and the exhaust of the first cylinder at different speeds and loads show the impact of the different combustion modes, especially due to temperature and oxygen content variations, on NOx and combustion efficiency. Chemical kinetics calculations have been elaborated to explain some of the main observations.</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.