The islands of the Aegean Volcanic Arc are a popular travel destination with over 1 million tourists every year but are also locations of strong tectonic and volcanic activity. In the central part of the arc, the entire Christiana-Santorini-Kolumbo (CSK) volcanic complex (Nomikou et al., 2019) as well as Milos Island have been highly active, generating over 100 explosive eruptions from ∼360,000 years ago to recent times (Druitt et al., 1999
<p>The Hellenic arc hosts several active volcanic centers, of which the Milos, Santorini-Kolumbo and Kos-Yali-Nisyros volcanic fields present particularly high threats due to recent unrest (2011-2012 and 1996-1997 at Santorini and Nisyros, respectively). These volcanic centers have repeatedly produced highly explosive eruptions (VEI 4 to 7) from ~360 ka into historic times. The marine tephra record provides information not only on the number of events, but also on their magnitudes and intensities inferred from tephra dispersal characteristics, and is thus essential to quantitatively assess future volcanic hazards and risks.</p><p>Here we complement earlier work on distal to ultra-distal east-Mediterranean sediment cores, which captured the largest eruptions. We present results from a grid of medial to distal sediment cores collected in 2017 during RV Poseidon cruise POS513 with core positions both comparatively close to and between the three volcanic fields, in order to record medium- to large-scale eruptions.</p><p>During this cruise, 47 gravity cores up to 7.4 m long, and 3 box cores of the uppermost 0.5 m sediment were recovered, which contain more than 220 primary ash layers. The compositions of glass shards from all layers were characterized by major (EMP) and trace-element (LA-ICPMS) analyses.</p><p>Geochemical fingerprinting supports correlations with 20 eruptions from all three volcanic fields as well as with the 39 ka Campanian ignimbrite eruption from the Campi Flegrei, Italy. Correlations with eleven eruptions from Santorini-Kolumbo (Kameni, Kolumbo 1650, Minoan, Cape Riva, Cape Tripiti, Upper Scoria 1 and 2, Middle Pumice, Cape Thera, Lower Pumice, Cape Therma 3) are established, and we newly identify two widespread tephras from eruptions on Milos (Lower and Upper Firiplaka). We have probably been able to solve some previous chronostratigraphic problems at Kos-Yali-Nisyros by correlating marine tephras with the Kos Plateau Tuff, and with the Yali 2 tephra, whereby we identify a second, less evolved facies produced by that eruption that has not yet been recognized on land. We also find tephras from four eruptions on Nisyros (Nisyros 1 to 4) including the previously established Lower (Nisyros 4) and Upper (Nisyros1) Nisyros Pumice eruptions.</p><p>These correlations also provide new age constraints for hitherto poorly or non-dated Aegean tephras based on sedimentation rates derived between multiple anchor points of dated terrestrial tephra ages. We deduce ages of ~22 ka and ~36 ka for Upper and Lower Firiplaka tephras from Milos (the latter overlying the Campanian ash) which are significantly younger than other eruption ages known from Milos, ~54 ka, ~62 ka, ~69 ka, and ~76 ka for the Nisyros 1 to 4 tephras, and ~52 ka for the Yali 1 tephra as well as a verified age of 33 ka for the Yali 2 tephra with its two contemporaneous facies.</p><p>These new tephrostratigraphic results help to improve quantifications of distribution and eruption characteristics for all these eruptions, and provide important pre-site survey data for the Santorini IODP proposal VolTecArc.</p>
In recent years, a strong push towards driverless mobility solutions can be seen in many transportation sectors including railways. While the European Train Control System already specifies the necessary interfaces to open up the possibility of Automatic Train Operation (ATO) for mainline railway vehicles, required infrastructure-side upgrades of interlocking systems are time- and cost-intensive. Alternatively, a pure vehicle-side Automatic Train Operation solution can be conceptualized that relies on processing the same audio-visual input a human train driver would normally base his decisions on. This would require the vehicle-side detection of track-side railway signals to determine the vehicle’s movement authority and allowed maximum speed. Such a signal detection system could furthermore be employed as an Advanced Driver Assistance System (ADAS) or support autonomous shunting operations. To enable such a system, this paper presents GERALD, a novel dataset for a neural network based detection approach of railway signals. The dataset contains 5000 images from a wide variety of railway scenes as well as annotations for the most common types of German mainline railway signals. The material was gathered using publicly available cab-view recordings uploaded by railway enthusiasts on YouTube. Using a state of the art neural network architecture for evaluation, we notice promising detection accuracies despite GERALD being a comparably small dataset. The dataset is freely available for research and non-commercial purposes at: https://github.com/ifs-rwth-aachen/GERALD
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.