Human gait is as unique to an individual as is their fingerprint. It remains unknown, however, what gait characteristics differentiate well between individuals that could define the uniqueness of human gait. The purpose of this work was to determine the gait characteristics that were most relevant for a neural network to identify individuals based on their running patterns. An artificial neural network was trained to recognize kinetic and kinematic movement trajectories of overground running from 50 healthy novice runners (males and females). Using layer-wise relevance propagation, the contribution of each variable to the classification result of the neural network was determined. It was found that gait characteristics of the coronal and transverse plane as well as medio-lateral ground reaction forces provided more information for subject identification than gait characteristics of the sagittal plane and ground reaction forces in vertical or anterior-posterior direction. Additionally, gait characteristics during the early stance were more relevant for gait recognition than those of the mid and late stance phase. It was concluded that the uniqueness of human gait is predominantly encoded in movements of the coronal and transverse plane during early stance.
The aim of this study was to explore the effects of a deep-defending vs high-press defending strategy on footballers' tactical behaviour, physical and physiological responses, when in numerical difference. Methods: Nineteen elite professional footballers (outfield players) participated in this study, playing an 11vs10 match (simulating an early dismissal) for two halves of 10 minutes on a full-sized regulation pitch. The 11-men team was instructed by the head coach to defend closer to goal in the first half (deep-defending) and then defend higher up the pitch in the second half (high-press). Players' positional data were used to calculate the distance between team centroids, players' distance to own and to opponent centroid, teams' effective playing space (EPS), teams' length per width ratio, distance covered and player velocity. Heart rate was measured via short-range radio telemetry. Results: Relative-phase analysis of teams' EPS showed 61.6% of anti-phase synchronisation pattern (i.e. the values change in opposite directions) in the deep-defending game. In the high-press game, teams' centroid distances were closer (% difference in means; ±90% CL,-21.0%; ±9.5%), while players' distances to own and opponent centroids were 20% more regular. Distance covered (-19.8%; ±2.5%), player velocity (-20.0%; ±2.5%) and heart rates also decreased in the high-press game. Conclusion: These findings suggest that, adopting a high-press defending strategy can elicit closer centroid distances, more regular movement patterns, decreased synchronisation patterns of EPS, lower distance covered, lower player velocity, and lower heart rates. Coaches may also consider adopting a high-press strategy, when in numerical superiority, to decrease players' physical and physiological demands.
Ground reaction forces (GRFs) describe how runners interact with their surroundings and provide the basis for computing inverse dynamics. Wearable technology can predict time−continuous GRFs during walking and running; however, the majority of GRF predictions examine level ground locomotion. The purpose of this manuscript was to predict vertical and anterior–posterior GRFs across different speeds and slopes. Eighteen recreationally active subjects ran on an instrumented treadmill while we collected GRFs and plantar pressure. Subjects ran on level ground at 2.6, 3.0, 3.4, and 3.8 m/s, six degrees inclined at 2.6, 2.8, and 3.0 m/s, and six degrees declined at 2.6, 2.8, 3.0, and 3.4 m/s. We estimated GRFs using a set of linear models and a recurrent neural network, which used speed, slope, and plantar pressure as inputs. We also tested eliminating speed and slope as inputs. The recurrent neural network outperformed the linear model across all conditions, especially with the prediction of anterior–posterior GRFs. Eliminating speed and slope as model inputs had little effect on performance. We also demonstrate that subject−specific model training can reduce errors from 8% to 3%. With such low errors, researchers can use these wearable−based GRFs to understand running performance or injuries in real−world settings.
Placing a stronger focus on subject-specific responses to footwear may lead to a better functional understanding of footwear’s effect on running and its influence on comfort perception, performance, and pathogenesis of injuries. We investigated subject-specific responses to different footwear conditions within ground reaction force (GRF) data during running using a machine learning-based approach. We conducted our investigation in three steps, guided by the following hypotheses: (I) For each subject x footwear combination, unique GRF patterns can be identified. (II) For each subject, unique GRF characteristics can be identified across footwear conditions. (III) For each footwear condition, unique GRF characteristics can be identified across subjects. Thirty male subjects ran ten times at their preferred (self-selected) speed on a level and approximately 15 m long runway in four footwear conditions (barefoot and three standardised running shoes). We recorded three-dimensional GRFs for one right-foot stance phase per running trial and classified the GRFs using support vector machines. The highest median prediction accuracy of 96.2% was found for the subject x footwear classification (hypothesis I). Across footwear conditions, subjects could be discriminated with a median prediction accuracy of 80.0%. Across subjects, footwear conditions could be discriminated with a median prediction accuracy of 87.8%. Our results suggest that, during running, responses to footwear are unique to each subject and footwear design. As a result, considering subject-specific responses can contribute to a more differentiated functional understanding of footwear effects. Incorporating holistic analyses of biomechanical data is auspicious for the evaluation of (subject-specific) footwear effects, as unique interactions between subjects and footwear manifest in versatile ways. The applied machine learning methods have demonstrated their great potential to fathom subject-specific responses when evaluating and recommending footwear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.