Pd nanoparticles have been embedded on silica aerogel by using three different techniques. In each of them the metal was loaded in the matrix at different steps of the production: the direct synthesis, the wet impregnation and the supercritical impregnation of the previously dried aerogels. The resultant materials have been characterized to analyze the differences depending on the applied technique for its impregnation. Atomic absorption, nitrogen physisorption, X-ray diffraction, infrared spectroscopy and transmission electron microscopy where performed. In all the techniques the concentration of metal has been varied (from 0.13 to 1.61 % wt.) by modifying the concentration of the suspension (Pd-polyvinylpyrrolidone nanoparticles used in the direct synthesis) or of the solution of the metallic precursor (palladium acetylacetonate), both in the organic solvent and the supercritical media. The characterization had generally shown a good distribution of the metallic particles in the matrix, and the negligible effect of the metal on the textural properties. Finally, considerable variations where observed on the silanol groups on the surface of the catalysts. These materials were tested in D-glucose hydrogenation, observing significant differences on the performance of the catalyst depending on the synthesis technique employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.