Background Individuals with bipolar disorder are commonly correctly diagnosed a decade after symptom onset. Machine learning techniques may aid in early recognition and reduce the disease burden. As both individuals at risk and those with a manifest disease display structural brain markers, structural magnetic resonance imaging may provide relevant classification features. Methods Following a pre-registered protocol, we trained linear support vector machine (SVM) to classify individuals according to their estimated risk for bipolar disorder using regional cortical thickness of help-seeking individuals from seven study sites (N = 276). We estimated the risk using three state-of-the-art assessment instruments (BPSS-P, BARS, EPIbipolar). Results For BPSS-P, SVM achieved a fair performance of Cohen's κ of 0.235 (95% CI 0.11–0.361) and a balanced accuracy of 63.1% (95% CI 55.9–70.3) in the 10-fold cross-validation. In the leave-one-site-out cross-validation, the model performed with a Cohen's κ of 0.128 (95% CI −0.069 to 0.325) and a balanced accuracy of 56.2% (95% CI 44.6–67.8). BARS and EPIbipolar could not be predicted. In post hoc analyses, regional surface area, subcortical volumes as well as hyperparameter optimization did not improve the performance. Conclusions Individuals at risk for bipolar disorder, as assessed by BPSS-P, display brain structural alterations that can be detected using machine learning. The achieved performance is comparable to previous studies which attempted to classify patients with manifest disease and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted a leave-one-site-out cross-validation. Whole-brain cortical thickness seems to be superior to other structural brain features.
Individuals with bipolar disorder are commonly correctly diagnosed a decade after the onset of first symptoms. Machine learning techniques may aid in early recognition and reduce the disease burden. As both individuals at risk and those with a manifest disease display structural brain markers, structural magnetic resonance imaging (MRI) may provide relevant classification features. Following a pre-registered protocol, we trained linear support vector machine (SVM) to classify individuals according to their estimated risk for bipolar disorder using regional cortical thickness values of help-seeking individuals from 7 study sites (N = 276). We estimated the risk using three state-of-the-art assessment instruments (BPSS-P, BARS and EPIbipolar). For BPSS-P, SVM achieved a fair performance of Cohen's kappa of 0.235 (95% CI 0.11–0.361) and a balanced accuracy of 63.1% (95% CI 55.9–70.3) in the 10-fold crossvalidation. In the leave-one-site-out crossvalidation, the model performed with a Cohen's kappa of 0.128 (95% CI -0.069-0.325) and a balanced accuracy of 56.2% (95% CI 44.6–67.8). BARS and EPIbipolar could not be predicted. In post hoc analyses, regional surface area, subcortical volumes as well as hyperparameter optimization did not improve the performance. Individuals at risk for bipolar disorder, as assessed by BPSS-P, display brain structural alterations that can be detected using machine learning. The achieved performance is comparable to previous studies which attempted to classify patients with manifest disease and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted a leave-one-site-out crossvalidation. Whole brain cortical thickness seem to be superior to other structural brain features.
The pathophysiology of bipolar disorder (BD) remains mostly unclear. Yet, a valid biomarker is necessary to improve upon the early detection of this serious disorder. Patients with manifest BD display reduced volumes of the hippocampal subfields and amygdala nuclei. In this pre-registered analysis, we used structural MRI (n = 271, 7 sites) to compare volumes of hippocampus, amygdala and their subfields/nuclei between help-seeking subjects divided into risk groups for BD as estimated by BPSS-P, BARS and EPIbipolar. We performed between-group comparisons using linear mixed effects models for all three risk assessment tools. Additionally, we aimed to differentiate the risk groups using a linear support vector machine. We found no significant volume differences between the risk groups for all limbic structures during the main analysis. However, the SVM could still classify subjects at risk according to BPSS-P criteria with a balanced accuracy of 66.90% (95% CI 59.2–74.6) for 10-fold cross-validation and 61.9% (95% CI 52.0–71.9) for leave-one-site-out. Structural alterations of the hippocampus and amygdala may not be as pronounced in young people at risk; nonetheless, machine learning can predict the estimated risk for BD above chance. This suggests that neural changes may not merely be a consequence of BD and may have prognostic clinical value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.