Urolophus bucculentus, the largest urolophid species found in southern Australia, exhibits a biennial reproductive cycle. Ovulation occurs during October to January followed by a 15-19 month period of gestation followed by parturition during April to May and a short rest period while the ovarian follicles continue to develop for subsequent ovulation. Male breeding condition peaks during April to June to coincide with the period of parturition. Urolophus bucculentus has the highest matrotrophic contribution reported for any urolophid species, with a mean wet mass gain from egg in utero (4 g) to full-term embryo in utero (250 g) of c. 6250% (maximum c. 7200%), and perhaps explains the biennial female reproductive cycle where 50% of females contribute to each year's recruitment. Litter size (one to five) increases with total length (L(T) ). Females reach a longer maximum L(T) (L(Tmax) ) than do males (885 v. 660 mm). The L(T) at maturity for males and females at 50% mature (L(T50) ) is c. 414 mm (63% of L(Tmax) ) for males and c. 502 mm (57% of L(Tmax) ) for females, length at maternity indicates that recruitment production occurs later in life at c. 632 mm L(T) (71% of L(Tmax) ).
We develop a potentially widely applicable framework for analysing the vulnerability, resilience risk and exposure of chondrichthyan species to all types of anthropogenic stressors in the marine environment. The approach combines the three components of widely applied vulnerability analysis (exposure, sensitivity and adaptability) (ESA) with three components (exposure, susceptibility and productivity) (ESP) of our adaptation of productivity–susceptibility analysis (PSA). We apply our 12‐step ESA‒ESP analysis to evaluate the vulnerability (risk of a marked reduction of the population) of each of 132 chondrichthyan species in the Exclusive Economic Zone of southern Australia. The vulnerability relates to a species’ resilience to a spatial (or suitability) reduction of its habitats from exposure to up to eight climate change stressors. Vulnerability also relates to anthropogenic mortality added to natural mortality from exposure to the stressors of five types of fishing and seven other types of anthropogenic hazards. We use biological attributes as risk factors to evaluate risk related to resilience at the species or higher taxonomic level. We evaluate each species’ exposure to anthropogenic stressors by assigning it to one of six ecological groups based on its lifestyle (demersal versus pelagic) and habitat, defined by bathymetric range and substrates. We evaluate vulnerability for 11 scenarios: 2000–2006 when fishing effort peaked; 2018 following a decade of fisheries management reforms; low, medium and high standard future carbon dioxide equivalent emissions scenarios; and their six possible climate–fishing combinations. Our results demonstrate the value of refugia from fishing and how climate change exacerbates the risks from fishing.
In applying a quantitative approach to the reproduction of Trygonoptera imitata, the present study contributes to understanding the wide diversity in the reproductive biology of the family Urolophidae and provides insights to help determine phylogenetic relationships. This localised species is taken as bycatch in several inshore fisheries and potentially impacted by a range of other anthropogenic pressures, including introduced species, particularly in shallow-water pupping areas. T. imitata can be characterised as a species of comparatively low matrotrophic histotrophy with an extended period of relatively large eggs in utero (5–8 months) followed by rapid growth of the embryos (4–6 months). The reproductive cycle is annual with parturition occurring during late-February–April, followed immediately by ovulation. Mean size-at-birth is ~225 mm total length and there is a ~1000% gain in mean wet mass from egg (15 g) to full-term embryo in utero (150 g), the lowest reported for any viviparous batoid. Litter size increases with maternal length, reaching a maximum of seven, and sex ratio of embryos is 1 : 1. Maximum length and estimates of the maturity–ogive parameters l50 and l95 are similar for females and males.
Whether spatial variation occurs in the life-history traits of chondrichthyan species is important to fisheries modelling and assessments. A study on the reproductive parameters of Urolophus paucimaculatus from four separate regions across south-eastern Australia found regional differences in maximum total length (TL), size-at-maturity, size-atmaternity and litter sizes. Inshore embayments (Port Phillip Bay (PPB) and Corner Inlet (CI)) appear to allow for larger TLs (females and males) than do offshore areas (Lakes Entrance (LE) and Western Bass Strait (WBS)). Size-at-maturity and size-at-maternity decreased across longitude from west (PPB) to east (LE) and seasonality of parturition and ovulation occurred earlier in PPB (August-October) than in LE (September-December). Maximum litter size correlated with maximum TL (six in PPB, five in each of CI and LE, and four in WBS). There was uncertainty in classifying females for maternal condition because the reproductive cycle appears to range from a continuous annual cycle to a non-continuous biennial cycle. Much of the uncertainty arises from the ambiguity of observation of non-pregnant mature females, which have either aborted through capture and handling, or are in a 'resting year' between pregnancies. Most likely, the majority are reproducing annually with an unknown proportion of females non-continuous and resting between pregnancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.