A hybrid MCMC between the sequential Gibbs and the pCN-MCMC approach is presented.• This hybrid MCMC is more efficient than both special cases.
<p>Geostatistical inference (or inversion) methods are commonly used to estimate the spatial distribution of heterogeneous soil properties (e.g., hydraulic conductivity) from indirect measurements (e.g., piezometric heads). One approach is to use Bayesian inversion to combine prior assumptions (prior models) with indirect measurements to predict soil parameters and their uncertainty, which can be expressed in form of a posterior parameter distribution. This approach is mathematically rigorous and elegant, but has a disadvantage. In realistic settings, analytical solutions do not exist, and numerical evaluation via Markov chain Monte Carlo (MCMC) methods can become computationally prohibitive. Especially when treating spatially distributed parameters for heterogeneous materials, constructing efficient MCMC methods is a major challenge.</p><p>Here, we present two novel MCMC methods that extend and combine existing MCMC algorithms to speed up convergence for spatial parameter fields. First, we present the<em> sequential pCN-MCMC</em>, which is a combination of the <em>sequential Gibbs sampler</em>, and the <em>pCN-MCMC</em>. This <em>sequential pCN-MCMC</em> is more efficient (faster convergence) than existing methods. It can be used for Bayesian inversion of multi-Gaussian prior models, often used in single-facies systems. Second, we present the <em>parallel-tempering sequential Gibbs MCMC</em>. This MCMC variant enables realistic inversion of multi-facies systems. By this, we mean systems with several facies in which we model the spatial position of facies (via training images and multiple point geostatistics) and the internal heterogeneity per facies (via multi-Gaussian fields). The proposed MCMC version is the first efficient method to find the posterior parameter distribution for such multi-facies systems with internal heterogeneities.</p><p>We demonstrate the applicability and efficiency of the two proposed methods on hydro-geological synthetic test problems and show that they outperform existing state of the art MCMC methods. With the two proposed MCMCs, we enable modellers to perform (1) faster Bayesian inversion of multi-Gaussian random fields for single-facies systems and (2) Bayesian inversion of more realistic fields for multi-facies systems with internal heterogeneity at affordable computational effort.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.